
CHIP MONOLITHIC CERAMIC CAPACITORS

CONTENTS

Part	Numbering			
Sele	ction Guide			
1	for Flow/Reflow Soldering GRP15/GRM15/18/21/31 Series ————————————————————————————————————			
2	for Reflow Soldering GRM32/43/55 Series			
3	Ultra-small GRP03 Series			
4	Thin Type (Flow/Reflow)			
GRM	M/GRP Series Specifications and Test Methods			
5	Thin Layer Large-capacitance Type			
6	High-power Type			
GRM	//GRP Series Data			
7	for Smoothing			
8	Microchips			
9	Capacitor Arrays			
10	for Ultrasonic Sensors			
11	Low ESL			
12	High Frequency for Flow/Reflow Soldering			
13	High-Q & High Power Type			
14	High Frequency Type			
ERF	/ERH/ERA/ERD Series Data			
Pack	kage			
<u> </u>	aution			
Notio				
Refe	erence Data			
15	Medium-voltage Low Dissipation Factor			
16	Medium-voltage High-Capacitance for General-Use			
17	AC250V(r.m.s.) Type			
18	Safety Standard Recognized Type GC (UL, IEC60384-14 Class X1/Y2)			
19	Safety Standard Recognized Type GD (IEC60384-14 Class Y3) — 1			
20	Safety Standard Recognized Type GF (IEC60384-14 Class Y2) ———————————————————————————————————			

Safety Standard Recognized Type GB (IEC60384-14 Class X2)	115
GA3 Series Specifications and Test Methods	116
GRM/GA2/GA3 Series Data	119
Package	122
↑ Caution —————————————————————————————————	125
Notice	131
ISO 9000 Certifications	134

Please refer to "Specifications and Test Methods" at the end of each chapter of 5 - 17 .

1 ^

■ Part Numbering (The structure of the "Global Part Numbers" that have been adopted since June 2001 and the meaning of each code are described herein.)

Chip Monolithic Ceramic Capacitors

(Global Part Number) | GR | M | 18 | 8 | B1 | 1H | 102 | K | A01 | K

1 Product ID

2Series

3 Series			
Product ID	Code	Series	
GR	M	Tin Plated layer	
GR	Р	Soldering Electrode	
	F	High-frequency and high-power Type	
ER	H A D	High-frequency and high-power Type (Ribbon Terminal)	
		High-frequency Type	
		High-frequency Type (Ribbon Terminal)	
GQ	М	High-frequency for Flow/Reflow Soldering	
GM	Α	Monolithic Microchip	
GN	M	Capacitor Array	
LL	L	Low ESL Wide-width Type	
61	6	Low Dissipation	
GJ	2	Smoothing Type	
0.4	2	for AC250V (r.m.s.)	
GA	3	Safety Standard Recognized Type	

3Dimension (LXW)

Code	Dimension (L×W) EIA		
03	0.6×0.3 mm 0201		
05	0.5×0.5 mm 0202		
08	0.8×0.8 mm	0303	
11	1.25×1.0 mm	0504	
15	1.0×0.5 mm	0402	
18	1.6×0.8 mm	0603	
1D	1.4×1.4 mm		
1X	Depends on individual standards.		
21	2.0×1.25 mm 0805		
22	2.8×2.8 mm 1111		
31	3.2×1.6 mm 1206		
32	3.2×2.5 mm 1210		
3X	Depends on individual standards.		
42	4.5×2.0 mm 1808		
43	4.5×3.2 mm 1812		
52	5.7×2.8 mm 2211		
55	5.7×5.0 mm 2220		

4Dimension (T)

Code	Dimension (T)	
3	0.3 mm	
4	4-elements (Array Type)	
5	0.5 mm	
6	0.6 mm	
7	0.7 mm	
8	0.8 mm	
9	0.85 mm	
Α	1.0 mm	
В	1.25 mm	
С	1.6 mm	
D	2.0 mm	
E	2.5 mm	
М	1.15 mm	
N	1.35 mm	
R	1.8 mm	
Q	1.5 mm	
Х	Depends on individual standards.	

With the array type GNM series, "Dimension (T)" indicates the number of elements.

5Temperature Characteristics

Code Temperature Temperature Characteristics Range		•	Capacitance Change or Temperature Coefficient	Operating Temperature Range	
1X	SL	20 to 85°C	+350 to -1000ppm/°C	-55 to 125°C	
5C	COG	-55 to 125°C	0±30ppm/°C	-55 to 125°C	
6C C0H -		-55 to 125°C	0±60ppm/°C	-55 to 125°C	
6P	P2H	-55 to 85°C	-150±60ppm/°C	-55 to 125°C	
6R	R2H	-55 to 85°C	-220±60ppm/°C	-55 to 125°C	

Continued from	the preceding page.				
6S	S2H	-55 to 85°C	-330±60ppm/°C	-55 to 125°C	
6T	T2H	-55 to 85°C	-470±60ppm/°C	-55 to 125°C	
7U	U2J	-55 to 85°C	-750±120ppm/°C	-55 to 125°C	
В3	В	-25 to 85°C	±10%	-25 to 85°C *	
E4	Z5U	10 to 85°C	+22, -56%	10 to 85°C	
F5	Y5V	-30 to 85°C	+22, -82%	-30 to 85°C	
R3	R	-55 to 125°C	±15%	-55 to 125°C	
R6	X5R	-55 to 85°C	±15%	-55 to 85°C	
R7	X7R	-55 to 125°C	±15%	-55 to 125°C	
05	71.54	-25 to 20°C	-4700+100/-2500ppm/°C	-25 to 85°C	
9E	ZLM	20 to 85°C	-4700+500/-1000ppm/°C	-25 10 85 °C	

^{*} GRM series 630V : -55 to 125°C

6 Rated Voltage

Code	Rated Voltage	
0J	DC6.3V	
1A	DC10V	
1C	DC16V	
1E	DC25V	
1H	DC50V	
2A	DC100V	
2D	DC200V	
2E	DC250V	
YD	DC300V	
2H	DC500V	
2J	DC630V	
3A	DC1kV	
3D	DC2kV	
3F	DC3.15kV	
E2	AC250V	
GB	X2; AC250V (Safety Standard Recognized Type GB)	
GC	X1, Y2; AC250V (Safety Standard Recognized Type GC)	
GD	Y3; AC250V (Safety Standard Recognized Type GD)	
GF	Y2; AC250V (Safety Standard Recognized Type GF)	

Capacitance

Expressed by three figures. The unit is pico-farad (pF). The first and second figures are significant digits, and the third figure expresses the number of zeros which follow the two numbers. If there is a decimal point, it is expressed by the capital letter "R". In this case, all figures are significant digits.

		<u> </u>
Ex.)	Code	Capacitance
	R50	0.5pF
	1R0	1.0pF
	100	10pF
	103	10000pF

8 Capacitance Tolerance

Code	Capacitance Tolerance	TC	Series	Capac	tance Step
В	±0.1pF	СΔ	GJ6	≦5pF	E24 Series,1pF
С	10.05.5	CΔ-SL	GRP/GRM/ERF/ERH/ERA/ERD/GQM	≦5pF	* 1pF
C	±0.25pF	СΔ	GJ6	<10pF	E24 Series,1pF
	±0.5pF	CΔ-SL	GRP/GRM	6.0 to 9.0pF	* 1pF
D	±0.5pF	СΔ	ERF/ERH/ERA/ERD/GQM/GJ6	5.1 to 9.1pF	E24 Series
G	±2%	СΔ	GJ6	≧10pF	E12 Series
G		СΔ	GQM	≧10pF	E24 Series
J	±5%	CΔ-SL	GRP/GRM	≥10pF	E12 Series
J	±3 70	СΔ	ERF/ERH/ERA/ERD/GQM/GJ6	≥10pF	E24 Series
K	±10%	B,R,X7R,X5R,ZLM	GRP/GRM/GA3	E6 Series	
	±20%	Z5U	GRM	GRM E3 S	
M		B,R,X7R	GMA/LLL	E6	Series
		В	GA2	E3	Series
Z	+80%, -20%	F,Y5V	GRP/GRM/GJ2	E3 Series	
R	Depends on individual standards.				

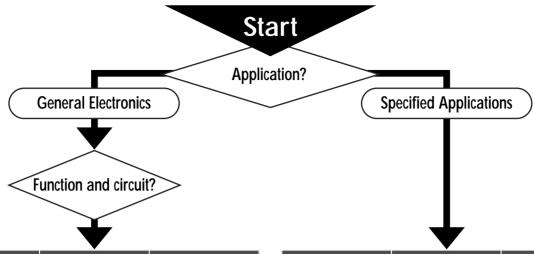
^{*} E24 series is also available.

Individual Specification Code

Code	Series	Individual Specification	Temperature Characteristics Type *4	Inner Electrode	Under coat metal of Oute Electrode	
• • •	GRM *1	0. 1.17	TC	- Base Metal	Base Metal	
A01	GRM *1/GRP/LLL	- Standard Type	HiK			
A11	GRM *1	Special Dimension Type (Tolerances of LXWXT are ±0.15mm)	HiK	Base Metal	Base Metal	
A12	GRM *1	Special Characteristics (Applied Voltage is X1.25 of Rated Voltage at High Temperature Load Test)	HiK	Base Metal	Base Metal	
A61	GRM *1	Special Characteristics (Under special control)	HiK	Base Metal	Base Metal	
B01	GJ6/GQM	Standard Type	TC	Base Metal (Cu)	Base Metal	
C01	GRM *1	Standard Type	HiK	Base Metal	Precious Meta	
C11	GRM *1	Special Dimension Type (Tolerances of LXW are ±0.2mm, others)	HiK	Base Metal	Precious Meta	
C12	GRM *1	Special Dimension Type (Length is 3.2±0.2, Width is 1.6±0.2mm, Thickness is 1.2±0.1mm)	HiK	Base Metal	Precious Meta	
	ERA/ERD/ERF/ERH		TC	Precious Metal	Precious Metal	
D01	GRM *1/GRP	Standard Type	TC			
	GRM *1/GJ2/GMA/GRP/LLL	(Non-coated type for ERH series)	HiK			
D02	ERH	Standard Type (Coated with Resin)	TC	Dragious Matal		
	GRP	Standard Type (Ceramic Material of Relaxor Type)	HiK	Precious Metal	Precious Meta	
544	GJ2	Special Dimension Type (Thickness is 1.8±0.2mm)	HiK	Day alawa Matal	Precious Metal	
D11	GRP	Special Dimension Type (Thickness is 0.25±0.05mm)	TC	Precious Metal		
D12	GJ2	Special Dimension Type (Thickness is 2.2±0.3mm)	HiK	Precious Metal	Precious Meta	
V01	GRM *2	Standard Type (New Ceramic Material)	TC	Precious Metal	Precious Meta	
14/04	GRM *3/GA3	Chandrad Time	HiK B MILL		tel Dece M. C.	
W01	GRM *3	Standard Type	TC	Base Metal	Base Metal	
W02	GA3	Special Dimension Type (Tolerance of Thickness is ±0.3mm)	HiK	Base Metal	Base Metal	
W03	GRM *3	Special Dimension Type (Tolerance of Thickness is ±0.2mm)	HiK	Base Metal	Base Metal	
V04	GRM *3	0	TC	Precious Metal	Precious Meta	
Y01	GRM *3	Standard Type	HiK			
V00	GA2/GA3	Special Dimension Type	HiK	Dan eleve Metel	Danatawa Mata	
Y02	GRM *3	(Tolerance of Thickness is ±0.3mm)	TC	Precious Metal	riecious ivieta	
Y05	GRM *3	Special Dimension Type (Thickness is 2.7+0/-0.3mm)	HiK	Precious Metal	Precious Meta	
Y06	GA3	Special Dimension Type (Thickness is 2.7±0.3mm)	HiK	Precious Metal	Precious Meta	
Y21	GRM *2	Standard Type	TC	Precious Metal	Precious Meta	
Z01	GRM *1/GRP	Standard Type (New Ceramic Material)	TC	Precious Metal	Precious Meta	

^{*1} Apply to rated voltage 100V and under.

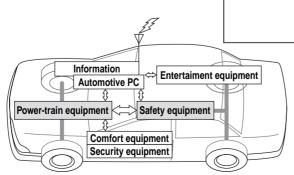
Packaging


Code	Packaging	
E	ø178mm 2mm Pitch Paper Taping	
F	ø330mm 2mm Pitch Paper Taping	
L	ø178mm 4mm Pitch Plastic Taping	
D	ø178mm 4mm Pitch Paper Taping	
K	ø330mm 4mm Pitch Plastic Taping	
J	ø330mm 4mm Pitch Paper Taping	
В	Bulk	
С	Bulk Case	
Т	Bulk Tray	

^{*2} Apply to rated voltage 200/500V. *3 Apply to rated voltage 250V, 630V to 3.15kV.

^{*4 &}quot;TC"means Temperature Conpensating Type and "HiK" means High Dielectric Type.

Selection Guide of Chip Monolithic Ceramic Capacitors



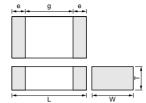
for Filter for Synchronize Circuit	for Bypassing	for Coupling
for Oscillation Circuit	for De-coupling	for Time Constant Circu
Soldering Electrode C0G Char. GRP_5C/GRM_5C Series (0.5pF-39000pF) Capacitor Arrays C0G Char. GNM_5C Series (10pF-360pF)	Soldering Electrode Y5V Char. GRP_F5/GRM_F5 Series (2200pF-10μF) Microchip Y5V Char. GMA_F5 Series (4700pF-0.1μF) Capacitor Arrays Y5V Char. GNM_F1 Series (22000pF-0.15μF)	Soldering Electrode X5R/X7R Char. GRP_R6,R7/ GRM_R6,R7 Series (220pF-10µF) Soldering Electrode COG/C0H Char. GRP/GRM_5C/6C Series (0.5pF-39000pF) Thin Layer Large-capacitance Type
for Temperature Compensation	Low-ESL Y5V Char. LLL31_F5 Series (0.22µF-1.0µF)	X5R Char. 10μF GRM21BR6 Series (22μF)
Soldering Electrode for temperature compensation GRP_/GRM_ Series (0.5pF-39000pF) Capacitor Arrays for temperature compensation GNM_5C Series (10pF-360pF)	(O-Z-Lya. 110ya.)	Microchip GMA_R7 Series (470pF-10000pF) Capacitor Arrays GNM Series (390pF-1.0μF) Low-ESL LLL Series (2200pF-1.0μF)

for High-frequency	for Ultra-thin Circuit	Medium-voltage
High-frequency/ High-power type Soldering Electrode ERF Series (0.75pF-1000pF)	Thin type Soldering Electrode GRP15X Series (0.5pF-4700pF)	630V/1kV/2kV/3.15kV Low-dissipation GRM Series (10pF-1000pF)
High-freqeuncy/ High-Power Ribbon Terminal type ERH Series (0.75pF-1000pF)	for Smoothing	High-capacitance GRM Series (1000pF-0.47μF)
High-frequency type	GJ2 Series (1μF-100μF)	
ERA Series (0.75pF-1000pF) High-frequency Ribbon Terminal type	Low-dissipation	Safety Standard Recognized
ERD Series (0.75pF-1000pF) High-frequency for flow/reflow	GJ615 Series (0.5pF-18pF)	AC250V which meet Japanese Law GA2 Series (470pF-0.1μF)
soldering GQM Series (0.5pF-100pF)	for Ultrasonic Sensors	UL/IEC Safety Standard Recognized GA3 Series
	ZLM Char. GRM2199E Series (1000pF/1500pF)	(100pF-33000pF)

for Automotive*(Power-train, safety equipment)

GCM/GCP Series $(0.5pF-2.2\mu F)$

* For other automotive equipment such as comfort, security, information, entertaiment, GRM/GRP series (for general electronics) are available.



for Flow/Reflow Soldering GRP15/GRM15/18/21/31 Series

■ Features

- 1. Terminations are made of metal highly resistant to migration.
- 2. The GRM series is a complete line of chip ceramic capacitors in 6.3V, 10V, 16V, 25V, 50V and 100V ratings. These capacitors have temperature characteristics ranging from C0G to Y5V.
- 3. A wide selection of sizes is available, from the miniature LxWxT: 1.0x0.5x0.5mm to LxWxT: 3.2x1.6x1.15 mm.
 - GRM18, 21 and GRM31 types are suited to flow and reflow soldering.
 - GRP15 types is applied to only reflow soldering.
- 4. Stringent dimensional tolerances allow highly reliable, high speed automatic chip placement on PCBs.
- 5. The GRP/GRM series is available in paper or plastic embossed tape and reel packaging for automatic placement. Bulk case packaging is also available for GRP15, GRM18, GRM21 ectronic equipment.
- 6. Dielectric layer of GRP15 Y5V 0.22uF/0.47uF/1.0uF are relaxor

Part Number		Din	nensions (n	nm)	
Part Number	L	W	T	е	g min.
GRP155	1 0 40 05	0.5 ±0.05	0.5 ±0.05	0.15 to 0.3	0.4
GRM155	1.0 ±0.03	0.5 <u>1</u> 0.05	0.5 ±0.05	0.15 10 0.3	0.4
GRM188*	1.6 ±0.1	0.8 ±0.1	0.8 ±0.1	0.2 to 0.5	0.5
GRM216			0.6 ±0.1		
GRM219	2.0 ±0.1	1.25 ±0.1	0.85 ±0.1	0.2 to 0.7	0.7
GRM21B			1.25 ±0.1		
GRM319	3.2 ±0.15	1 4 ±0 1E	0.85 ±0.1		
GRM31M	3.2 ±0.15	1.0 ±0.15	1.15 ±0.1	0.3 to 0.8	1.5
GRM31C	3.2 ±0.2	1.6 ±0.2	1.6 ±0.2		

^{*} Bulk Case : 1.6 ±0.07(L) × 0.8 ±0.07(W) × 0.8 ±0.07(T)

Applications

6

General electronic equipment.

Temperature Compensating Type GRP15 Series (1.0x0.5mm)

Part Number					GRP15		1		
L x W [EIA]				1	.00x0.50 [040	2]			
тс	C0G (5C)	C0H (6C)	P2H (6P)	R2H (6R)	S2H (6S)	S (1	X)	T2H (6T)	U2J (7U)
Rated Volt.	50 (1H)	25 (1E)	50 (1H)	50 (1H)	50 (1H)	25 (1E)	50 (1H)	50 (1H)	50 (1H)
Capacitance (Ca	pacitance par	t numbering co	ode) and T(mm)	Dimension (T	Dimension par	t numbering co	ode)	•	
0.5pF(R50)	0.50(5)								
0.75pF(R75)	0.50(5)								
1.0pF(1R0)	0.50(5)								
2.0pF(2R0)	0.50(5)								
3.0pF(3R0)	0.50(5)		0.50(5)	0.50(5)	0.50(5)			0.50(5)	0.50(5)
4.0pF(4R0)	0.50(5)		0.50(5)	0.50(5)	0.50(5)			0.50(5)	0.50(5)
5.0pF(5R0)	0.50(5)		0.50(5)	0.50(5)	0.50(5)			0.50(5)	0.50(5)
6.0pF(6R0)	0.50(5)		0.50(5)	0.50(5)	0.50(5)			0.50(5)	0.50(5)
7.0pF(7R0)	0.50(5)		0.50(5)	0.50(5)	0.50(5)			0.50(5)	0.50(5)
8.0pF(8R0)	0.50(5)		0.50(5)	0.50(5)	0.50(5)			0.50(5)	0.50(5)
9.0pF(9R0)	0.50(5)		0.50(5)	0.50(5)	0.50(5)			0.50(5)	0.50(5)
10.0pF(100)	0.50(5)		0.50(5)	0.50(5)	0.50(5)			0.50(5)	0.50(5)
12.0pF(120)	0.50(5)		0.50(5)	0.50(5)	0.50(5)			0.50(5)	0.50(5)
15.0pF(150)	0.50(5)		0.50(5)	0.50(5)	0.50(5)			0.50(5)	0.50(5)
18.0pF(180)	0.50(5)		0.50(5)	0.50(5)	0.50(5)			0.50(5)	0.50(5)
22.0pF(220)	0.50(5)		0.50(5)	0.50(5)	0.50(5)			0.50(5)	0.50(5)
27.0pF(270)	0.50(5)		0.50(5)	0.50(5)	0.50(5)			0.50(5)	0.50(5)

Part Number					GRP15				
L x W [EIA]				1	.00x0.50 [040	2]			
тс	C0G (5C)	C0H (6C)	P2H (6P)	R2H (6R)	S2H (6S)		SL X)	T2H (6T)	U2J (7U)
Rated Volt.	50 (1H)	25 (1E)	50 (1H)	50 (1H)	50 (1H)	25 (1E)	50 (1H)	50 (1H)	50 (1H)
Capacitance (Ca	pacitance part	numbering co	de) and T(mm)) Dimension (T	Dimension pa	rt numbering co	ode)		
33.0pF(330)	0.50(5)			0.50(5)	0.50(5)			0.50(5)	0.50(5)
39.0pF(390)	0.50(5)				0.50(5)			0.50(5)	0.50(5)
47pF(470)	0.50(5)						0.50(5)	0.50(5)	0.50(5)
56pF(560)	0.50(5)						0.50(5)	0.50(5)	0.50(5)
68pF(680)	0.50(5)						0.50(5)	0.50(5)	0.50(5)
82pF(820)	0.50(5)						0.50(5)	0.50(5)	0.50(5)
100pF(101)	0.50(5)						0.50(5)	0.50(5)	0.50(5)
120pF(121)	0.50(5)						0.50(5)		0.50(5)
150pF(151)	0.50(5)						0.50(5)		0.50(5)
180pF(181)		0.50(5)					0.50(5)		0.50(5)
220pF(221)		0.50(5)				0.50(5)			
270pF(271)		0.50(5)				0.50(5)			
330pF(331)						0.50(5)			
390pF(391)						0.50(5)			

The part numbering code is shown in ().

Temperature Compensating Type GRM18 Series (1.60x0.80mm)

Part Number	GRM18												
L x W [EIA]						1.6	0x0.80 [0 <i>6</i>	503]					
тс		C0G (5C)		C0H (6C)	P2H (6P)	R2H (6R)	S2H (6S)			X)		T2H (6T)	U2J (7U)
Rated Volt.	50 (1H)	100 (2A)	200 (2D)	25 (1E)	50 (1H)	50 (1H)	50 (1H)	25 (1E)	50 (1H)	100 (2A)	200 (2D)	50 (1H)	50 (1H)
Capacitance (Ca	pacitance	part num	bering cod	le) and T(ı	mm) Dimer	nsion (T Di	mension p	art numb	ering code)			
0.5pF(R50)	0.80(8)		0.80(8)										
0.75pF(R75)	0.80(8)		0.80(8)										
1.0pF(1R0)	0.80(8)		0.80(8)										
2.0pF(2R0)	0.80(8)		0.80(8)										
3.0pF(3R0)	0.80(8)		0.80(8)		0.80(8)	0.80(8)	0.80(8)					0.80(8)	0.80(8)
4.0pF(4R0)	0.80(8)		0.80(8)		0.80(8)	0.80(8)	0.80(8)					0.80(8)	0.80(8)
5.0pF(5R0)	0.80(8)		0.80(8)		0.80(8)	0.80(8)	0.80(8)					0.80(8)	0.80(8)
6.0pF(6R0)	0.80(8)		0.80(8)		0.80(8)	0.80(8)	0.80(8)					0.80(8)	0.80(8)
7.0pF(7R0)	0.80(8)		0.80(8)		0.80(8)	0.80(8)	0.80(8)					0.80(8)	0.80(8)
8.0pF(8R0)	0.80(8)		0.80(8)		0.80(8)	0.80(8)	0.80(8)					0.80(8)	0.80(8)
9.0pF(9R0)	0.80(8)		0.80(8)		0.80(8)	0.80(8)	0.80(8)					0.80(8)	0.80(8)
10.0pF(100)	0.80(8)		0.80(8)		0.80(8)	0.80(8)	0.80(8)					0.80(8)	0.80(8)
12pF(120)	0.80(8)	0.80(8)			0.80(8)	0.80(8)	0.80(8)				0.80(8)	0.80(8)	0.80(8)
15pF(150)	0.80(8)	0.80(8)			0.80(8)	0.80(8)	0.80(8)				0.80(8)	0.80(8)	0.80(8)
18pF(180)	0.80(8)	0.80(8)			0.80(8)	0.80(8)	0.80(8)				0.80(8)	0.80(8)	0.80(8)
22pF(220)	0.80(8)	0.80(8)			0.80(8)	0.80(8)	0.80(8)				0.80(8)	0.80(8)	0.80(8)
27pF(270)	0.80(8)	0.80(8)			0.80(8)	0.80(8)	0.80(8)				0.80(8)	0.80(8)	0.80(8)
33pF(330)	0.80(8)	0.80(8)			0.80(8)	0.80(8)	0.80(8)				0.80(8)	0.80(8)	0.80(8)
39pF(390)	0.80(8)	0.80(8)			0.80(8)	0.80(8)	0.80(8)				0.80(8)	0.80(8)	0.80(8)
47pF(470)	0.80(8)	0.80(8)			0.80(8)	0.80(8)	0.80(8)				0.80(8)	0.80(8)	0.80(8)
56pF(560)	0.80(8)	0.80(8)			0.80(8)	0.80(8)	0.80(8)				0.80(8)	0.80(8)	0.80(8)
68pF(680)	0.80(8)	0.80(8)			0.80(8)	0.80(8)	0.80(8)		0.80(8)		0.80(8)	0.80(8)	0.80(8)
82pF(820)	0.80(8)	0.80(8)			0.80(8)	0.80(8)	0.80(8)		0.80(8)		0.80(8)	0.80(8)	0.80(8)
100pF(101)	0.80(8)	0.80(8)			0.80(8)	0.80(8)	0.80(8)		0.80(8)		0.80(8)	0.80(8)	0.80(8)
120pF(121)	0.80(8)	0.80(8)			0.80(8)	0.80(8)	0.80(8)		0.80(8)	0.80(8)		0.80(8)	0.80(8)

Dimensions are shown in mm and Rated Voltage in Vdc.

Part Number							GRM18						
L x W [EIA]						1.6	0x0.80 [0 <i>6</i>	503]					
тс		C0G (5C)		C0H (6C)	P2H (6P)	R2H (6R)	S2H (6S)			X)		T2H (6T)	U2J (7U)
Rated Volt.	50 (1H)	100 (2A)	200 (2D)	25 (1E)	50 (1H)	50 (1H)	50 (1H)	25 (1E)	50 (1H)	100 (2A)	200 (2D)	50 (1H)	50 (1H)
Capacitance (Ca	pacitance	part num	bering cod	de) and T(r	nm) Dimei	nsion (T Di	mension p	art numbe	ering code)			
150pF(151)	0.80(8)	0.80(8)			0.80(8)	0.80(8)	0.80(8)		0.80(8)	0.80(8)		0.80(8)	0.80(8)
180pF(181)	0.80(8)					0.80(8)	0.80(8)		0.80(8)	0.80(8)		0.80(8)	0.80(8)
220pF(221)	0.80(8)						0.80(8)		0.80(8)	0.80(8)		0.80(8)	0.80(8)
270pF(271)	0.80(8)								0.80(8)	0.80(8)		0.80(8)	0.80(8)
330pF(331)	0.80(8)								0.80(8)	0.80(8)		0.80(8)	0.80(8)
390pF(391)	0.80(8)								0.80(8)	0.80(8)		0.80(8)	0.80(8)
470pF(471)	0.80(8)								0.80(8)				0.80(8)
560pF(561)	0.80(8)			0.80(8)					0.80(8)				0.80(8)
680pF(681)	0.80(8)								0.80(8)				0.80(8)
820pF(821)	0.80(8)							0.80(8)					
1000pF(102)	0.80(8)							0.80(8)					
1200pF(122)	0.80(8)							0.80(8)					
1500pF(152)	0.80(8)							0.80(8)					

The part numbering code is shown in $\,$ ().

Temperature Compensating Type GRM21 Series (2.00x1.25mm)

Part Number							GRM21						
L x W [EIA]						2.0	0x1.25 [08	305]					
тс		C0G (5C)		C0H (6C)	P2H (6P)	R2H (6R)	S2H (6S)		S (1	X)		T2H (6T)	U2J (7U)
Rated Volt.	50 (1H)	100 (2A)	200 (2D)	25 (1E)	50 (1H)	50 (1H)	50 (1H)	25 (1E)	50 (1H)	100 (2A)	200 (2D)	50 (1H)	50 (1H)
Capacitance (Ca	pacitance	part num	bering cod	le) and T(ı	mm) Dimer	nsion (T Di	imension p	oart numb	ering code	.)			
12pF(120)			0.85(9)										
15pF(150)			0.85(9)										
18pF(180)			0.85(9)										
22pF(220)			0.85(9)										
27pF(270)			0.85(9)										
33pF(330)			0.85(9)										
39pF(390)			0.85(9)										
47pF(470)			0.85(9)										
56pF(560)			0.85(9)										
68pF(680)		0.85(9)	1.25(B)										
82pF(820)		0.85(9)	1.25(B)										
100pF(101)		0.85(9)	1.25(B)										
120pF(121)		0.85(9)	1.25(B)								0.85(9)		
150pF(151)		0.85(9)	1.25(B)								1.25(B)		
180pF(181)		0.85(9)	1.25(B)		0.85(9)						1.25(B)		
220pF(221)		0.85(9)	1.25(B)		0.85(9)	0.85(9)					1.25(B)		
270pF(271)		0.85(9)			0.85(9)	0.85(9)	0.85(9)				1.25(B)		
330pF(331)		0.85(9)			0.85(9)	0.85(9)	0.85(9)				1.25(B)		
390pF(391)		1.25(B)			1.25(B)	0.85(9)	0.85(9)				1.25(B)		
470pF(471)		1.25(B)			1.25(B)	0.85(9)	0.85(9)			0.85(9)	1.25(B)		
560pF(561)	0.60(6)	1.25(B)			1.25(B)	1.25(B)	1.25(B)			0.85(9)		1.25(B)	
680pF(681)	0.60(6)	1.25(B)				1.25(B)	1.25(B)			0.85(9)		1.25(B)	
820pF(821)	0.60(6)	1.25(B)					1.25(B)		0.60(6)	1.25(B)		1.25(B)	0.60(6)
1000pF(102)	0.60(6)	1.25(B)							0.60(6)	1.25(B)		1.25(B)	0.60(6)
1200pF(122)	0.60(6)								0.60(6)	1.25(B)		1.25(B)	0.60(6)
1500pF(152)	0.60(6)								0.85(9)	1.25(B)		1.25(B)	0.85(9)

Dimensions are shown in mm and Rated Voltage in Vdc.

Part Number							GRM21						
L x W [EIA]						2.0	0x1.25 [08	305]					
тс		C0G (5C)		C0H (6C)	P2H (6P)	R2H (6R)	S2H (6S)		S (1		T2H (6T)	U2J (7U)	
Rated Volt.	50 (1H)	100 (2A)	200 (2D)	25 (1E)	50 (1H)	50 (1H)	50 (1H)	25 (1E)	50 (1H)	100 (2A)	200 (2D)	50 (1H)	50 (1H)
Capacitance (Ca	pacitance	part num	bering cod	de) and T(r	nm) Dime	nsion (T Di	mension p	oart numbe	ering code)		•	
1800pF(182)	0.60(6)								0.85(9)	1.25(B)		1.25(B)	0.85(9)
2200pF(222)	0.60(6)								0.85(9)				0.85(9)
2700pF(272)	0.60(6)			1.25(B)					1.25(B)				1.25(B)
3300pF(332)	0.60(6)			1.25(B)					1.25(B)				1.25(B)
3900pF(392)				1.25(B)				0.85(9)					
4700pF(472)								0.85(9)					
5600pF(562)								1.25(B)					
6800pF(682)								1.25(B)					

The part numbering code is shown in ().

Temperature Compensating Type GRM31 Series (3.20x1.60mm)

Part Number		-						GRM31							
L x W [EIA]							3.20)x1.60 [1	206]						
тс		C(5	0G (C)		C0H (6C)	P2H (6P)	R2H (6R)	S2H (6S)			SL (1X)			T2H (6T)	U2J (7U)
Rated Volt.	25 (1E)	50 (1H)	200 (2D)	500 (2H)	25 (1E)	50 (1H)	50 (1H)	50 (1H)	25 (1E)	50 (1H)	100 (2A)	200 (2D)	500 (2H)	50 (1H)	50 (1H)
Capacitance (Ca	pacitano	e part nu	umbering	code) ar	nd T(mm) Dimens	ion (T Dir	mension	part num	bering c	ode)		'		'
1.0pF(1R0)				1.15(M)											
2.0pF(2R0)				1.15(M)											
3.0pF(3R0)				1.15(M)											
4.0pF(4R0)				1.15(M)											
5.0pF(5R0)				1.15(M)											
6.0pF(6R0)				1.15(M)											
7.0pF(7R0)				1.15(M)											
8.0pF(8R0)				1.15(M)											
9.0pF(9R0)				1.15(M)											
10.0pF(100)				1.15(M)											
12pF(120)				1.15(M)											
15pF(150)				1.15(M)											
18pF(180)				1.15(M)											
22pF(220)				1.15(M)											
27pF(270)				1.15(M)											
33pF(330)				1.15(M)											
39pF(390)				1.15(M)											
47pF(470)				1.15(M)											
56pF(560)				1.15(M)											
68pF(680)				1.15(M)											
82pF(820)				1.15(M)											
100pF(101)				1.15(M)											
120pF(121)				1.15(M)											
150pF(151)													1.15(M)		
180pF(181)													1.15(M)		
220pF(221)													1.15(M)		
270pF(271)			1.15(M)										1.15(M)		
330pF(331)			1.15(M)												
390pF(391)			1.15(M)												
470pF(471)			1.15(M)												
560pF(561)			` '									1.15(M)			

Dimensions are shown in mm and Rated Voltage in Vdc.

Part Number								GRM31							
L x W [EIA]							3.20	x1.60 [1	206]						
тс		C(5 ()G C)		C0H (6C)	P2H (6P)	R2H (6R)	S2H (6S)			SL (1X)			T2H (6T)	U2J (7U)
Rated Volt.	25 (1E)	50 (1H)	200 (2D)	500 (2H)	25 (1E)	50 (1H)	50 (1H)	50 (1H)	25 (1E)	50 (1H)	100 (2A)	200 (2D)	500 (2H)	50 (1H)	50 (1H)
Capacitance (Ca	apacitano	e part nu	ımbering	code) aı	nd T(mm)	Dimens	ion (T Dir	nension	part num	bering co	ode)			•	
680pF(681)						0.85(9)						1.15(M)			
820pF(821)						0.85(9)	0.85(9)					1.15(M)			
1000pF(102)						1.15(M)	1.15(M)	0.85(9)				1.15(M)			
1200pF(122)						1.15(M)	1.15(M)	1.15(M)				1.15(M)			
1500pF(152)						1.15(M)	1.15(M)	1.15(M)							
1800pF(182)								1.15(M)							
2200pF(222)											1.15(M)			1.15(M)	
2700pF(272)		0.85(9)									1.15(M)			1.15(M)	
3300pF(332)		0.85(9)									1.15(M)			1.15(M)	
3900pF(392)		1.15(M)								0.85(9)	1.15(M)			1.15(M)	0.85(9)
4700pF(472)		0.85(9)								0.85(9)	1.15(M)				0.85(9)
5600pF(562)		1.15(M)								0.85(9)					0.85(9)
6800pF(682)					0.85(9)					1.15(M)					1.15(M)
8200pF(822)					1.15(M)					1.15(M)					1.15(M)
10000pF(103)	0.85(9)								1.15(M)						
12000pF(123)									1.15(M)						
15000pF(153)									1.15(M)						

The part numbering code is shown in ().

Dimensions are shown in mm and Rated Voltage in Vdc.

High Dielectric Constant Type X5R (R6) Characteristics

тс				X5R (R6)			
Part Number	GRP15	GR	M18	GR	M21	GR	M31
L x W [EIA]	1.00x0.50 [0402]	1.60x0.8	30 [0603]	2.00x1.2	25 [0805]	3.20x1.6	60 [1206]
Rated Volt.	10 (1A)	6.3 (0J)	10 (1A)	6.3 (0J)	10 (1A)	6.3 (0J)	10 (1A)
Capacitance (Ca	apacitance part nun	nbering code) and	T(mm) Dimension	(T Dimension part i	numbering code)		
68000pF(683)	0.50 (5)						
0.1μF(104)	0.50 (5)						
0.33μF(334)			0.80(8)				
0.47μF(474)			0.80(8)				
0.68μF(684)			0.80(8)				
1.0μF(105)		0.80(8)	0.80(8)		0.85(9)		
1.5μF(155)				0.85(9)			
2.2μF(225)				1.25(B)			0.85(9)
3.3μF(335)				1.25(B)			1.30(X)
4.7μF(475)				1.25(B)		1.15(M)	1.60(C)
10μF(106)						1.60(C)	1.60(C)

The part numbering code is shown in each ().

 $^{3.3\}mu F$ and $4.7\mu F$ for 6.3V is replaced with GRM21B series of L: 2 ± 0.15 , W: 1.25 ± 0.15 , T: 1.25 ± 0.15 .

T: 1.25±0.1mm is also available for GRM21 10V 1.0 μF type.

 $^{3.3\}mu F$ for 10V rated is replaced with GRM31X series of L: 3.2 ± 0.2 , W: 1.6 ± 0.2 , T: 1.2 ± 0.1 mm.

T: 1.15 \pm 0.1 is also available for GRM31, 16V, 1.0 μ F type.

High Dielectric Constant Type X7R (R7) Characteristics

тс									X7R (R7)								
Part Number			P15				GRM18					M21	-			M31	
L x W [EIA]		1.00x0.5					x0.80 [0				2.00x1.2			3.20x1.60 [1206]			
Rated Volt.	10 (1A)	16 (1C)	25 (1E)	50 (1H)	10 (1A)	16 (1C)	25 (1E)	50 (1H)	100 (2A)	16 (1C)	25 (1E)	50 (1H)	100 (2A)	10 (1A)	16 (1C)	25 (1E)	50 (1H)
Capacitance (Ca	pacitan	ice part	numbei		e) and T	Γ(mm) D	imensio	T T	nension	part nu	mbering	g code)	I	I	I	I	I
220pF (221)				0.50 (5)				0.80 (8)									
330pF (331)				0.50 (5)				0.80 (8)									
470pF (471)				0.50 (5)				0.80 (8)									
680pF (681)				0.50 (5)				0.80 (8)									
1000pF (102)				0.50 (5)				0.80 (8)									
1500pF (152)				0.50 (5)				0.80									
2200pF (222)				0.50 (5)				0.80	0.80								
3300pF (332)				0.50 (5)				0.80	0.80								
4700pF (472)				0.50 (5)				0.80	(5)				0.85 (9)				
6800pF (682)			0.50 (5)	(0)				0.80					0.85 (9)				
10000pF (103)			0.50 (5)					0.80 (8)					1.25 (B)				
15000pF (153)		0.50 (5)						0.80 (8)									
22000pF (223)		0.50 (5)						0.80 (8)									
33000pF (333)	0.50 (5)						0.80 (8)					0.85 (9)					
47000pF (473)	0.50 (5)						0.80 (8)					1.25 (B)					
68000pF (683)							0.80 (8)					1.25 (B)					
0.10μF (104)						0.80 (8)	0.80 (8)				1.25 (B)	1.25 (B)					
0.15μF (154)					0.80 (8)						1.25 (B)	1.25 (B)					
0.22μF (224)					0.80 (8)						0.85 (9)	1.25 (B)					
0.33μF (334)											1.25 (B)						0.85 (9)
0.47μF (474)										0.85 (9)	1.25 (B)						1.15 (M)
0.68μF (684)										0.85 (9)						0.85 (9)	
1.00μF (105)										1.25 (B)				0.85 (9)	0.85 (9)	1.15 (M)	
1.5μF (155)															1.15 (M)		

тс		X7R (R7)															
Part Number		GRP15 GRM18 GRM21 GRM31															
L x W [EIA]	1	.00x0.5	0402	2]		1.60	x0.80 [0	603]		2	2.00x1.2	25 [0805	5]	3	3.20x1.6	0 [1206	[b]
Rated Volt.	10 (1A)	16 (1C)	25 (1E)	50 (1H)	10 (1A)	16 (1C)	25 (1E)	50 (1H)	100 (2A)	16 (1C)	25 (1E)	50 (1H)	100 (2A)	10 (1A)	16 (1C)	25 (1E)	50 (1H)
Capacitance (Ca	pacitan	ce part	number	ing cod	e) and T	(mm) D	imensio	n (T Din	nension	part nu	mbering	g code)		•	•		·
2.2μF (225)		·												1.15 (M)	1.15 (M)	·	

The part numbering code is shown in each ().

High Dielectric Constant Type Y5V(F5) Characteristics

тс		Y5V (F5)																	
Part Number			GRP15	5				GRM18	3			GRI	W21				GRM31		
L x W [EIA]		1.00	x0.50 [(0402]			1.60x0.80 [0603]		2.	2.00x1.25 [0805]			3.20x1.60 [1206]						
Rated Volt.	6.3 (0J)	10 (1A)	16 (1C)	25 (1E)	50 (1H)	10 (1A)	16 (1C)	25 (1E)	50 (1H)	100 (2A)	10 (1A)	16 (1C)	25 (1E)	50 (1H)	6.3 (0J)	10 (1A)	16 (1C)	25 (1E)	50 (1H)
Capacitance (Ca	Capacitance (Capacitance part numbering code) and T(mm) Dimension (T Dimension part numbering code)																		
2200pF (222)					0.50 (5)														
4700pF (472)					0.50 (5)					0.80 (8)									
10000pF (103)					0.50 (5)				0.80 (8)										
22000pF (223)				0.50 (5)					0.80 (8)										
47000pF (473)			0.50 (5)						0.80 (8)										
0.10μF (104)			0.50 (5)					0.80 (8)						0.85 (9)					
0.22μF (224)		0.50 (5)					0.80 (8)						0.85 (9)	1.25 (B)					
0.47μF (474)		0.50 (5)				0.80 (8)	0.80 (8)						1.25 (B)						1.15 (M)
1.0μF (105)	0.50 (5)					0.80 (8)					0.85 (9)	0.85 (9)	0.85 (9)				0.85 (9)	1.15 (M)	
2.2μF (225)											1.25 (B)	1.25 (B)	1.25 (B)			0.85 (9)	1.15 (M)		
4.7μF (475)											1.25 (B)					1.15 (M)	1.15 (M)		
10.0μF (106)															1.15 (M)	1.15 (M)			

The part numbering code is shown in each ().

 $^{0.10\}mu F,\,50V$ rated are GRM21 series of L: 2±0.15, W: 1.25±0.15, T: 1.25±0.15.

T: 1.25 \pm 0.1mm is also available for GRM31 1.0 μ F for 16V.

The tolerance will be changed to L: 3.2 ± 0.2 , W: 1.6 ± 0.2 for GRM31 16V $1.0\mu F$ type. Also L: 3.2 ± 0.2 , W: 1.6 ± 0.2 , T: 1.15 ± 0.15 for GRM31 16V $1.5\mu F$ and $2.2\mu F$ type.

Dimensions are shown in mm and Rated Voltage in Vdc.

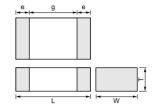
T: 1.25 \pm 0.1mm is also available for GRM21 25V or 16V 1.0 μ F type.

High Dielectric Constant Type Z5U(E4) Characteristics

тс	Z5U (E4)									
Part Number	GRM18	GRM21	GRM31							
L x W [EIA]	1.60x0.80 [0603]	2.00x1.25 [0805]	3.20x1.60 [1206]							
Rated Volt.	50 (1H)	50 (1H)	50 (1H)							
Capacitance (Ca	pacitance part numbering code) and T(mm)	Dimension (T Dimension part numbering co	ode)							
10000pF(103)	0.80 (8)									
22000pF(223)	0.80 (8)									
47000pF(473)		0.60(6)								
0.10μF(104)		0.85(9)								
0.22μF(224)			0.85 (9)							

The part numbering code is shown in ().

Dimensions are shown in mm and Rated Voltage in Vdc.



for Reflow Soldering GRM32/43/55 Series

■ Features

- 1. Terminations are made of metal highly resistant to migration.
- The GRM series is a complete line of chip ceramic capacitors in 10V, 16V, 25V, 50V and 100V ratings.
 These capacitors have temperature characteristics ranging from C0G to Y5V.
- This series consists of type LxWxT: 3.2x2.5x0.85mm to LxWxT: 5.7x5.9x2.0mm. These are suited to only reflow soldering.
- Stringent dimensional tolerances allow highly reliable, high speed automatic chip placement on PCBs.
- The GRM series is available in paper or plastic embossed tape and reel packaging for automatic placement.

Part Number		Dir	nensions (m	nm)		
Part Number	L	W	T	e min.	g min.	
GRM329			0.85 ±0.1			
GRM32M			1.15 ±0.1			
GRM32N	3.2 ±0.3	0.3 2.5 ±0.2 1.35 ±0.15 1.8 ±0.2	1.35 ±0.15	0.3	1.0	
GRM32R						
GRM32E			2.5 ±0.2			
GRM43M			1.15 ±0.1			
GRM43N	4.5 ±0.4	3.2 ±0.3	1.35 ±0.15	0.3	2.0	
GRM43R			1.8 ±0.2			
GRM55N	5.7 ±0.4	5.0 ±0.4	1.35 ±0.15	0.3	2.0	
GRM55R	5.7 ±0.4	5.0 ±0.4	1.8 ±0.2	0.3	2.0	

■ Applications

General electronic equipment.

Temperature Compensating Type GRM32 Series (3.20x2.50mm)

Part Number		,	GR	M32						
L x W [EIA]			3.20x2.5	50 [1210]						
тс	C (\$:0G 5C)		SL (1X)						
Rated Volt.	200 (2D)	00 500 50 100 200 D) (2H) (1H) (2A) (2D)				500 (2H)				
Capacitance (Capa	acitance part numb	ering code) and T(mn	n) Dimension (T Dimens	sion part numbering c	ode)					
150pF(151)		1.35(N)								
180pF(181)		1.35(N)								
330pF(331)						1.15(M)				
390pF(391)						1.15(M)				
470pF(471)						1.35(N)				
560pF(561)	1.35(N)									
680pF(681)	1.35(N)									
820pF(821)	1.35(N)									
1000pF(102)	1.35(N)									
1500pF(152)					1.35(N)					
5600pF(562)				1.35(N)						
6800pF(682)				1.35(N)						
10000pF(103)			1.35(N)							
12000pF(123)			1.35(N)							

The part numbering code is shown in ().

Temperature Compensating Type GRM43 Series (4.50x3.20mm)

Part Number	GRM43										
L x W [EIA]			4.50x3.	20 [1812]							
тс	C((5	OG C)	SL (1X)								
Rated Volt.	200 (2D)	500 (2H)	50 (1H)	100 (2A)	200 (2D)	500 (2H)					
Capacitance (Capa	citance part numbe	ering code) and T(mm)	Dimension (T Dimen	sion part numbering o	ode)						
220pF(221)		1.80(R)									
270pF(271)		1.80(R)									
330pF(331)		1.80(R)									
390pF(391)		1.80(R)									
470pF(471)		1.80(R)									
560pF(561)						1.15(M)					
680pF(681)						1.15(M)					
820pF(821)						1.35 (N)					
1000pF(102)						1.80(R)					
1200pF(122)	1.80(R)					1.80(R)					
1500pF(152)	1.80(R)										
1800pF(182)	1.80(R)				1.35(N)						
2200pF(222)	1.80(R)										
2700pF(272)	1.80(R)				1.80(R)						
3300pF(332)					1.80(R)						
3900pF(392)					1.80(R)						
8200pF(822)				1.35(N)							
10000pF(103)				1.80(R)							
12000pF(123)				1.80(R)							
15000pF(153)			1.80(R)	1.80(R)							

The part numbering code is shown in ().

Dimensions are shown in mm and Rated Voltage in Vdc.

Temperature Compensating Type GRM55 Series (5.70x5.00mm)

Part Number	GRM55										
L x W [EIA]			5.70x5.00 [2220]								
тс	C (5	0G 5C)	SL (1X)								
Rated Volt.	200 (2D)	500 (2H)	50 (1H)	100 (2A)	200 (2D)						
Capacitance (Ca	Capacitance (Capacitance part numbering code) and T(mm) Dimension (T Dimension part numbering code)										
560pF(561)		1.80(R)									
680pF(681)		1.80(R)									
820pF(821)		1.80(R)									
1000pF(102)		1.80(R)									
3300pF(332)	1.35(N)										
3900pF(392)	1.80(R)										
4700pF(472)	1.80(R)				1.35(N)						
5600pF(562)	1.80(R)				1.80 (R)						
6800pF(682)					1.80 (R)						
8200pF(822)					1.80(R)						
18000pF(183)			1.15(M)	1.15(M)							
22000pF(223)			1.35(N)	1.35(N)							
27000pF(273)			1.80(R)	1.80(R)							
33000pF(333)			1.80(R)	1.80(R)							
39000pF(393)			1.80(R)	1.80(R)							

The part numbering code is shown in $\ (\).$

High Dielectric Constant Type GRM32 Series (3.20x2.50mm)

Part Number					GRM32					
L x W [EIA]		3.20x2.50 [1210]								
тс	X5R (R6)	X7R (R7)					Y5V (F5)			
Rated Volt.	10 (1A)	16 (1C)	25 (1E)	50 (1H)	100 (2A)	16 (1C)				
Capacitance (Ca	pacitance par	t numbering co	de) and T(mm) Dimension (T	Dimension pa	rt numbering c	ode)	'		
68000pF(683)					1.35(N)					
0.1μF(104)					1.35(N)				1.35(N)	
0.68μF(684)				1.35(N)						
1.0μF(105)				1.80(R)				1.8(R)		
2.2μF(225)		1.15(M)	1.80(R)							
3.3μF(335)		1.35(N)								
4.7μF(475)		1.80(R)					0.85(9)			
10μF(106)	2.50(E)					1.35(N)	1.35(N)			

The part numbering code is shown in ().

Dimensions are shown in mm and Rated Voltage in Vdc.

High Dielectric Constant Type GRM43 Series (4.50x3.20mm)

Part Number	GR	M43						
L x W [EIA]	4.50x3.20 [1812]							
тс	X7R (R7)							
Rated Volt.	50 (1H) 100 (2A)							
Capacitance (Ca	pacitance part numbering code) and T(mm) Dimension (T Dimens	sion part numbering code)						
0.15μF(154)		1.80(R)						
0.22μF(224)		1.80(R)						
0.33μF(334)		1.60(C)						
0.47μF(474)		2.00(D)						
2.2μF(225)	2.50(E)							

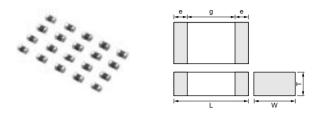
The part numbering code is shown in ().

Dimensions are shown in mm and Rated Voltage in Vdc.

High Dielectric Constant Type GRM55 Series (5.70x5.00mm)

Part Number		GRM55							
L x W [EIA]		5.70x5.00 [2220]							
тс	X7 (R	Y5V (F5)							
Rated Volt.	50 (1H)	100 (2A)							
Capacitance (Ca	pacitance part numbering code) and T(mm)	Dimension (T Dimension part numbering co	ode)						
0.47μF(474)			1.80 (R)						
0.68μF(684)		1.60(C)							
1.0μF(105)	1.80 (R)	2.00(D)							
1.5μF(155)	1.80(R)								

The part numbering code is shown in $\ (\).$



Ultra-small GRP03 Series

■ Features

- 1. Small chip size (LxWxT: 0.6x0.3x0.3mm).
- 2. Terminations are made of metal highly resistant to migration.
- 3. GRP03 type is suited to only reflow soldering.
- 4. Stringent dimensional tolerances are allow highly reliable, high speed autom atic chip placements on PCBs.
- 5. GRP03 series are suited to miniature micro wave module, portable equipment and high-frequency circuit.

Part Number	Dimensions (mm)							
Part Number	L	W	T	е	g min.			
GRP033	0.6 ±0.03	0.3 ±0.03	0.3 ±0.03	0.1 to 0.2	0.2			

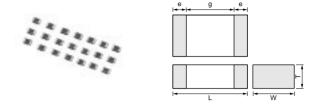
■ Applications

- Miniature micro wave module.
- Portable equipment.
- High-frequency circuit.

Part Number		GR	P03					
LxW		0.6x0.3						
тс	C0G (5C)	X (F	7R ?7)	Y5V (F5)				
Rated Volt.	25 (1E)	6.3 (0J)	16 (1C)	10 (1A)				
Capacitance (Capacit	ance part numbering code) and	T(mm) Dimension (T Dimen	sion part numbering code)					
0.5pF(R50)	0.3(3)							
1pF(1R0)	0.3(3)							
2pF(2R0)	0.3(3)							
3pF(3R0)	0.3(3)							
4pF(4R0)	0.3(3)							
5pF(5R0)	0.3(3)							
6pF(6R0)	0.3(3)							
7pF(7R0)	0.3(3)							
8pF(8R0)	0.3(3)							
9pF(9R0)	0.3(3)							
10pF(100)	0.3(3)							
12pF(120)	0.3(3)							
15pF(150)	0.3(3)							
18pF(180)	0.3(3)							
22pF(220)	0.3(3)							
27pF(270)	0.3(3)							
33pF(330)	0.3(3)							
39pF(390)	0.3(3)							
47pF(470)	0.3(3)							
56pF(560)	0.3(3)							
68pF(680)	0.3(3)							
82pF(820)	0.3(3)							
100pF(101)	0.3(3)		0.3(3)					
150pF(151)			0.3(3)					
220pF(221)			0.3(3)					
330pF(331)			0.3(3)					
470pF(471)			0.3(3)					
680pF(681)			0.3(3)					

 $\begin{tabular}{|c|c|c|c|}\hline \end{tabular}$ Continued from the preceding page.

Part Number	GRP03								
LxW	0.6x0.3								
тс	C0G (5C)	X. (R	Y5V (F5)						
Rated Volt.	25 (1E)	6.3 (0J)	16 (1C)	10 (1A)					
Capacitance (Capacita	ance part numbering code) and	d T(mm) Dimension (T Dimens	sion part numbering code)						
1000pF(102)			0.3(3)						
1500pF(152)		0.3(3)							
2200pF(222)		0.3(3)		0.3(3)					
3300pF(332)		0.3(3)							
4700pF(472)		0.3(3)		0.3(3)					
6800pF(682)		0.3(3)							
10000pF(103)		0.3(3)		0.3(3)					


The part numbering code is shown in $\,$ (). Dimensions are shown in mm and Rated Voltage in Vdc.

Thin Type (Flow/Reflow)

■ Features

- This series is suited to flow and reflow soldering.
 Capacitor terminations are made of metal highly resistant to migration.
- 2. Large capacitance values enable excellent bypass effects to be realized.
- Its thin package makes this series ideally suited for the production of small electronic products and for mounting underneath ICs.

Part Number	Dimensions (mm)						
Part Number	L	W	Т	е	g min.		
GRP15X	1.0 ±0.05	0.5 ±0.05	0.25 ±0.05	0.15 to 0.3	0.4		

■ Application

Thin equipment such as IC cards.

Part Number	TC Code	Rated Voltage (Vdc)	Capacitance (pF)	Length L (mm)	Width W (mm)	Thickness T (mm)
GRP15X5C1E121JD11	C0G	25	120 ±5%	1.00	0.50	0.25
GRP15X5C1E151JD11	C0G	25	150 ±5%	1.00	0.50	0.25
GRP15X5C1E181JD11	C0G	25	180 ±5%	1.00	0.50	0.25
GRP15X5C1E221JD11	C0G	25	220 ±5%	1.00	0.50	0.25
GRP15X5C1H1R0CD11	C0G	50	1 ±0.25pF	1.00	0.50	0.25
GRP15X5C1H2R0CD11	C0G	50	2 ±0.25pF	1.00	0.50	0.25
GRP15X5C1H3R0CD11	C0G	50	3 ±0.25pF	1.00	0.50	0.25
GRP15X5C1H4R0CD11	C0G	50	4 ±0.25pF	1.00	0.50	0.25
GRP15X5C1H5R0CD11	C0G	50	5 ±0.25pF	1.00	0.50	0.25
GRP15X5C1H6R0DD11	C0G	50	6 ±0.5pF	1.00	0.50	0.25
GRP15X5C1H7R0DD11	C0G	50	7 ±0.5pF	1.00	0.50	0.25
GRP15X5C1H8R0DD11	C0G	50	8 ±0.5pF	1.00	0.50	0.25
GRP15X5C1H9R0DD11	C0G	50	9 ±0.5pF	1.00	0.50	0.25
GRP15X5C1H100JD11	C0G	50	10 ±5%	1.00	0.50	0.25
GRP15X5C1H120JD11	C0G	50	12 ±5%	1.00	0.50	0.25
GRP15X5C1H150JD11	C0G	50	15 ±5%	1.00	0.50	0.25
GRP15X5C1H180JD11	C0G	50	18 ±5%	1.00	0.50	0.25
GRP15X5C1H220JD11	C0G	50	22 ±5%	1.00	0.50	0.25
GRP15X5C1H270JD11	C0G	50	27 ±5%	1.00	0.50	0.25
GRP15X5C1H330JD11	C0G	50	33 ±5%	1.00	0.50	0.25
GRP15X5C1H390JD11	C0G	50	39 ±5%	1.00	0.50	0.25
GRP15X5C1H470JD11	C0G	50	47 ±5%	1.00	0.50	0.25
GRP15X5C1H560JD11	C0G	50	56 ±5%	1.00	0.50	0.25
GRP15X5C1H680JD11	C0G	50	68 ±5%	1.00	0.50	0.25
GRP15X5C1H820JD11	C0G	50	82 ±5%	1.00	0.50	0.25
GRP15X5C1H101JD11	C0G	50	100 ±5%	1.00	0.50	0.25

			Specif	fication				
No.	Ite	em	Temperature Compensating Type	High Dielectric Type		Test Method		
1	Operating Tempera	-	-55 to +125℃	R6: -55 to +85°C R7: -55 to +125°C E4: +10 to +85°C F5: -30 to +85°C				
2	Rated Vo	ltage	See the previous page.		The rated voltage is defined as the maximum voltage way be applied continuously to the capacitor. When AC voltage is superimposed on DC voltage, V ^{p-r} whichever is larger, shall be maintained within the rate range.		citor. C voltage, V ^{p.p} or V ^{o.p} ,	
3	Appearai	nce	No defects or abnormalities.		Visual inspection.			
4	Dimensio	ns	Within the specified dimensions	3.	Using calipers on mid	crometer.		
5	Dielectric	Dielectric Strength No defects or abnormalities.			No failure shall be observed when *300% of the rated voltage (C0∆ to U2J and SL) or *250% of the rated voltage (X5R, X7 Z5U and Y5V) is applied between the terminations for 1 to 5 seconds, provided the charge/discharge current is less than 50mA. *200% for 500V			
6	Insulation Resistan		More than 10,000M Ω or 500 Ω •	F (Whichever is smaller)		stance shall be measured with a DC voltage rated voltage at 25°C and 75%RH max. and charging.		
7	Capacita	nce	Within the specified tolerance.	[R6, R7]	The capacitance/Q/D.F. shall be measured at 25°C at the frequency and voltage shown in the table.			
				W.V.: 25Vmin.: 0.025max. W.V.: 16/10V: 0.035max.	Item Cha	r. Frequency	Voltage	
				W.V.: 16/16V : 0.033max. W.V.: 6.3V 0.05max.(C<3.3μF) 0.1max.(C≥3.3μF)	ΔC to 7U, 1X (1000pF and below)	1±0.1MHz	0.5 to 5Vrms	
8	Q/ Dissipation (D.F.)	on Factor	30pFmin. : Q≧1000 30pFmax. : Q≧400+20C	0.1max.(C≦3.3μF) [E4] W.V. : 25Vmin. : 0.025max.	ΔC to 7U, 1X (more than 1000pF)	1±0.1kHz	1±0.2Vrms	
		F.)	C : Nominal Capacitance (pF)	[F5] W.V.: 25Vmin. : 0.05max.(C<10µF)	R6, R7, F5 (10µF and below)	1±0.1kHz	1±0.2Vrms	
				: 0.09max.(C≥1.0µF) W.V.: 16V : 0.07max.(C<1.0µF)	R6, R7, F5 (more than 10μF)	120±24Hz	0.5±0.1Vrms	
				: 0.09max.(C≧1.0µF) W.V. : 10Vmax. : 0.125max.	E4	1±0.1kHz	0.5±0.05Vrms	
		Capacitance Change	Within the specified tolerance. (Table A)	R6: Within±15% (-55 to +85°C) R7: Within±15% (-55 to +125°C) E4: Within +22/-56% (+10 to +85°C) F5: Within +22/-82% (-30 to +85°C)	The capacitance cha each specified tempe (1) Temperature Con The temperature coe Capacitance measur When cycling the tem 5 (C0∆: +25°C to +1 +85°C) the capacitan for the temperature of	erature stage. Inpensating Type Ifficient is determined Ifficient is	d using the erence. It from step 1 through oeffs.: +25°C to be specified tolerance	
	Capacitance	Temperature	Within the specified tolerance.		Table A. The capacitance drift between the maximu step 1,3 and 5 by the	m and minimum mea		
9	Temperature Characteristics	Coefficient	(Table A)	_	Step 1	Tempera 25±	· '	
	Characteristics				2	-55±3 (for ∆C to -30±3 (10±3 (f	7U/1X/R6/R7) (for F5)	
					3	25±	· · · · · · · · · · · · · · · · · · ·	
					4	125±3 (fo 85±3 (for o	,	
		Capacitance	Within ±0.2% or ±0.05pF		5	25±3 (101 to	· · · · · · · · · · · · · · · · · · ·	
		Capacitance Drift	Capacitance (Whichever is larger)			(2) High Dielectric Co The ranges of capac 25℃ value over the to shall be within the sp	itance change compa emperature ranges s	

Continued from the preceding page

710	Continued fr	om the prec		fication				
No.	Ite	em	Temperature			Test Me	thod	
			Compensating Type	High Dielectric Type				
10	O Adhesive Strength of Termination		No removal of the terminations	Solder the capacitor to the test jig (glass epoxy board) shown in Fig.1 using a eutectic solder. Then apply 10N* force in parallel with the test jig for 10±1sec. The soldering shall be done either with an iron or using the reflow method and shall be conducted with care so that the soldering is uniform and gree of defects such as heat shock. *2N (GRP03) 5N (GRP15,GRM18) Solder resist Baked electrode or copper foil Type a b C				
					GRP03 GRP15	0.3 0.4	0.9 1.5	0.3
					GRM18	1.0	3.0	1.2
					GRM21	1.2	4.0	1.65
					GRM31	2.2	5.0	2.0
					GRM32	2.2	5.0	2.9
					GRM43 GRM55	3.5 4.5	7.0 8.0	3.7 5.6
					GRIVISS	4.5	0.0	(in mm)
					(in n Fig.1			
		Appearance	No defects or abnormalities.					
		Capacitance	Within the specified tolerance.	I				
11	Vibration Resistance	Q/D.F.	30pFmin. : Q≥1000 30pFmax. : Q≥400+20C C : Nominal Capacitance (pF)	W.V. : 6.3V : 0.05max. (C<3.3μF) cap		or to the test jig under the sam subjected to a litude of 1.5mn the approxima rom 10 to 55Hz ximately 1 minu d of 2 hours in 6 hours).	e conditions as simple harmon , the frequenc te limits of 10 at and return to ute. This motion	s (10). The ic motion by being varied and 55Hz. The 10Hz, shall be
			No crack or marked defect shal	I occur.	Solder the capacition Fig.2 using a eution shown in Fig.3 iron or using the recare so that the so heat shock.	tectic solder. T 3. The solderin eflow method a	hen apply a for g shall be done nd shall be cor	rce in the direc- e either with an aducted with
12	Deflection	n	Type a GRP03 0.3 GRP15 0.4 GRM18 1.0 GRM21 1.2 GRM31 2.2 GRM32 2.2 GRM43 3.5 GRM55 4.5	t:1.6mm (GRP03/15:0.8mm) b				

Fig.2

Continued from the preceding page.

	Continued II	o a.o p.oo		fication					
No.	Ite	em	Temperature Compensating Type	High Dielectric Type	_	Tes	st Method	I	
13	Solderabi Terminati		75% of the terminations is to be continuously.	Immerse the capacitor in a solution of ethanol (JIS-K-8101) a rosin (JIS-K-5902) (25% rosin in weight propotion). Preheat at 80 to 120℃ for 10 to 30 seconds. After preheating immerse in eutectic solder solution for 2±0.5 seconds at 230±5℃.			eheating,		
			The measured and observed cl specifications in the following to	•					
		Appearance	No marking defects.						
		Capacitance Change	Within ±2.5% or ±0.25pF (Whichever is larger)	R6, R7 : Within ±7.5% E4, F5 : Within ±20%	— Preheat the capacitor at 120 to 150℃ for 1 minute.				
14	Resistance to Soldering Heat	Q/D.F.	30pFmin. : Q≥1000 30pFmax. : Q≥400+20C C : Nominal Capacitance (pF)	[R6, R7] W.V.: 25Vmin.: 0.025max. W.V.: 16/10V: 0.035max. W.V.: 6.3V:	Immerse the capacitor in a eutectic solder solution at 270 for 10±0.5 seconds. Let sit at room temperature for 24±1 (temperature compensating type) or 48±4 hours (high di constant type), then measure. •Initial measurement for high dielectric constant type Perform a heat treatment at 150 ±₁8℃ for one hour and let sit for 48±4 hours at room temperature. Perform the initial measurement. *Preheating for GRM32/43/55 Step Temperature Time 1 100℃ to 120℃ 1 min. 2 170℃ to 200℃ 1 min.		24±2 hour gh dielectrices and then ne ne		
		I.R.	More than $10,000\text{M}\Omega$ or 500Ω	• F (Whichever is smaller)					
		Dielectric Strength	No failure						
			The measured and observed cl specifications in the following ta						
		Appearance	No marking defects.						
		Capacitance Change	Within ±2.5% or ±0.25pF (Whichever is larger)	R6, R7 : Within ±7.5% E4, F5 : Within ±20%	Fix the capaci	tor to the supp	orting jig	n the same m	anner and
				[R6, R7] W.V.: 25Vmin.: 0.025max. W.V.: 16/10V: 0.035max. W.V.: 6.3V 0.05max. (C<3.3µF)	under the same conditions as (10). Perform the five cycles according to the four heat treatments listed in the following table. Let sit for 24±2 hours (temperature compensating type or 48±4 hour (high dielectric constant type) at room temperature, then measure.				
	Temperature			0.1max. (C≧3.3μF)	Step	1	2	3	4
15	Cycle	Q/D.F.	30pFmin. : Q≧1000 30pFmax. : Q≥400+20C	[E4] W.V.: 2.5Vmin.: 0.025max. [F5]	Temp.(℃)	Min. Operating Temp.+0/-3	Room Temp.	Max. Operating Temp.+3/-0	Room Temp.
			C : Nominal Capacitance (pF)	W.V. : 25Vmin.	Time(min.)	30±3	2 to 3	30±3	2 to 3
				: 0.05max. (C<1.0μF) : 0.09max. (C≥1.0μF) W.V. : 16V : 0.07max. (C<1.0μF) : 0.09max. (C≥1.0μF) W.V. : 10Vmax. : 0.125max.	•Initial measur Perform a hea let sit for 48±4 Perform the in	t treatment at hours at roon	150 ±₁8% n tempera	for one hour	
		I.R.	More than $10,000 \text{M}\Omega$ or 500Ω	F (Whichever is smaller)	1				
		Dielectric		1					

Continued on the following page. $\begin{tabular}{|c|c|c|c|} \hline \end{tabular}$

Continued from the preceding page.

			Specif	ication	
No.	Ite	em	Temperature Compensating Type	High Dielectric Type	Test Method
			The measured and observed chapecifications in the following ta		
		Appearance	No marking defects.		
		Capacitance Change	Within ±5% or ±0.5pF (Whichever is larger)	R6, R7 : Within ±12.5% E4, F5 : Within ±30%	
16	Humidity Steady State	[R6, R7] W.V.: 25Vmin.: 0.05max W.V.: 16/10V: 0.05max. W.V.: 6.3V 0.075max. (C<3.3µ 0.125max. (C≥3.3µ 0.125max. (C≥1.0µ	W.V.: 25Vmin.: 0.05max. W.V.: 16/10V: 0.05max. W.V.: 6.3V	Sit the capacitor at 40±2°C and 90 to 95% humiduty for 500±12 hours. Remove and let sit for 24±2 hours (temperature compensating type) or 48±4 hours (high dielectric constant type) at room temperature, then measure.	
		I.R.	More than 1,000M Ω or 50 Ω • F	(Whichever is smaller)	
		Dielectric Strength No failure			
			The measured and observed ch specifications in the following ta	•	
		Appearance	No marking defects.		
		Capacitance Change	Within ±7.5% or ±0.75pF (Whichever is larger)	R6, R7 : Within ±12.5% E4 : Within ±30% F5 : Within ±30% [W.V. : 10Vmax.] F5 : Within +30/-40%	
17	Humidity Load	Q/D.F.	30pF and over : Q≥200 30pF and below : Q≥100+10C/3 C : Nominal Capacitance (pF)	[R6, R7] W.V.: 25Vmin.: 0.05max. W.V.: 16/10V: 0.05max. W.V.: 6.3V 0.075max. (C<3.3μF) 0.125max. (C≥3.3μF) [E4] W.V.: 25Vmin.: 0.05max. [F5] W.V.: 25Vmin. : 0.075max. (C<1.0μF) : 0.125max. (C≥1.0μF) W.V.: 16V : 0.1max. (C<1.0μF) : 0.125max. (C≥1.0μF) W.V.: 10Vmax.: 0.15max.	Apply the rated voltage at 40±2°C and 90 to 95% humidity for 500±12 hours. Remove and let sit for 24±2 hours (temperature compensating type) or 48±4 hours (high dielectric constant type) at room temperature, then muasure. The charge/discharge current is less than 50mA. •Initial measurement for F5/10Vmax. Apply the rated DC voltage for 1 hour at 40±2°C. Remove and let sit for 48±4 hours at room temperature. Perform initial measurement.
		I.R.	More than 500MΩ or 25Ω • F(V	/hichever is smaller)	
		Dielectric Strength	No failure		

Continued from the preceding page.

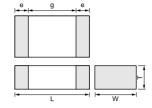
			Specif	fication	
No.	Item		Temperature Compensating Type	High Dielectric Type	Test Method
		The measured and observed ch specifications in the following ta		,	
		Appearance	No marking defects.		
		Capacitance Change	Within ±3% or ±0.3pF (Whichever is larger)	R6, R7 : Within ±12.5% E4 : Within ±30% F5 : Within ±30% (Cap<1.0μF) F5 : Within +30/−40%(Cap≥1.0μF)	Apply 200% of the rated voltage for 1000±12 hours at the maximun operating temperature ±3℃. Let sit for 24±2 hours
18	High Temperature Load	Q/D.F.	30pF and over : Q≥350 10pF and over 30pF and below : Q≥275+5C/2 10pF and below : Q≥200+10C C : Nominal Capacitance (pF)	[R6, R7] W.V.: 25Vmin.: 0.05max. W.V.: 16/10V: 0.05max. W.V.: 6.3V 0.075max. (C<3.3μF) 0.125max. (C≥3.3μF) [E4] W.V.: 25Vmin.: 0.05max [F5] W.V.: 25Vmin. : 0.075max. (C<1.0μF) : 0.125max. (C≥1.0μF) W.V.: 16V : 0.1max. (C<1.0μF) : 0.125max. (C≥1.0μF) W.V.: 10Vmax.: 0.15max.	(temperature compensating type) or 48±4 hours (high dielectric constant type) at room temperature, then measure. The charge/discharge current is less than 50mA. •Initial measurement for high dielectric constant type. Apply 200% of the rated DC voltage for one hour at the maximun operating temperature ±3°C. Remove and let sit for 48±4 hours at room temperature. Perform initial measurement. *150% for 500V and C≥10μF
		I.R.	More than 1,000MΩ or 50Ω•F(Whichever is smaller)	
		Dielectric Strength	No failure		
19	Notice		When mounting capacitor of 50	0V rated voltage, perform the epo	oxy resin coating(min.1.0mm thickness)

Table A

		Capacitance Change from 25°C (%)						
Char. Code	Nominal Values (ppm/°C)*	_	55	-30		-10		
		Max.	Min.	Max.	Min.	Max.	Min.	
5C	0± 30	0.58	-0.24	0.40	-0.17	0.25	-0.11	
6C	0± 60	0.87	-0.48	0.59	-0.33	0.38	-0.21	
6P	-150± 60	2.33	0.72	1.61	0.50	1.02	0.32	
6R	-220± 60	3.02	1.28	2.08	0.88	1.32	0.56	
6S	-330± 60	4.09	2.16	2.81	1.49	1.79	0.95	
6T	-470± 60	5.46	3.28	3.75	2.26	2.39	1.44	
7U	-750±120	8.78	5.04	6.04	3.47	3.84	2.21	
1X	+350 to -1000	_	_	_	_	_	_	

^{*}Nominal values denote the temperature coefficient within a range of 25°C to 125°C (for ΔC)/85°C (for other TC).

Thin Layer Large-capacitance Type


■ Features

- 1. Smaller size and higher capacitance value.
- 2. High reliability and no polarity.
- 3. Excellent pulse responsibility and noise reduction due to the low impedance at high frequency.

■ Applications

General electronic equipment.

Part Number	Dimensions (mm)						
	L	W	Т	e min.	g min.		
GRM21B	2.0 ±0.1	1.25 ±0.1	1.25 ±0.1	0.2 to 0.7	0.7		
GRM32D	3.2 ±0.3	2.5 ±0.2	2.0 ±0.2	0.3	1.0		

Part Number	TC Code	Rated Voltage (Vdc)	Capacitance (μF)	Length L (mm)	Width W (mm)	Thickness T (mm)
GRM21BR60J106KE01	X5R	6.3	10 ±10%	2.00	1.25	1.25
GRM32DR60J226KA01	X5R	6.3	22 ±10%	3.20	2.50	2.00

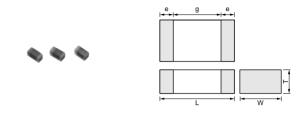
No.	Ite	em	Specification	Test Method			
1	Operating Temperat Range		R6 : −55°C to +85°C R7 : −55°C to +125°C				
2	2 Rated Voltage		See the previous page.	The rated voltage is defined as the maximum voltage which may be applied continuously to the capacitor. When AC voltage is superimposed on DC voltage, V ^{P-P} or V ^{O-P} , whichever is larger, shall be maintained within the rated voltage range.			
3	Appearar	nce	No defects or abnormalities.	Visual inspection.			
4	Dimensio	ins	Within the specified dimensions.	Using calipers.			
5	Dielectric	: Strength	No defects or abnormalities.	No failure shall be observed when 250% of the rated voltage is applied between the terminations for 1 to 5 seconds, provided the charge/discharge current is less than 50mA.			
6	Insulation Resistant		50Ω • F min	The insulation resistance shall be measured with a DC voltage not exceeding the rated voltage at 25℃ and 75%RH max. and within 1 minutes of charging.			
7	Capacita	nce	Within the specified tolerance.	The capacitance/D.F. shall be measured at 25℃ at the			
8	Dissipation Factor (D.F.) 0.1max.			frequency and voltage shown in the table. Capacitance Frequency Voltage C≤10μF 1±0.1kHz 0.5±0.1Vrms C>10μF 120±24Hz 0.5±0.1Vrms			
9	Capacitance 9 Temperature Characteristics		Char. Temp. Range Reference Temp. Cap. Change R6 −55 to +85°C 25°C Within±15% R7 −55 to +125°C 25°C Within±15%	The capacitance change shall be measured after 5 min. at each specified temperature stage. The ranges of capacitance change compared with the 25°C value over the temparature ranges shown in the table shall be within the spacified ranges. Step Temperature (°C) 1 25±2 2 -55±3 3 25±2 4 125±3 5 25±2			
10	Adhesive Strength of Termination		No removal of the terminations or other defect shall occur.	Solder the capacitor to the test jig (glass epoxy board) shown in Fig.1 using a eutectic solder. Then apply 10N force in parallel with the test jig for 10±1sec. The soldering shall be done either with an iron or using the reflow method and shall be conducted with care so that the soldering is uniform and free of defects such as heat shock C Solder resist Baked electrode or copper foil Type a Baked electrode or copper foil C GRM18 1.0 3.0 1.2 GRM21 1.2 4.0 1.65 GRM32 2.2 5.0 2.9 GRM43 3.5 7.0 3.7 GRM55 4.5 8.0 5.6			
				(in mm) Fig.1			
		Appearance	No defects or abnormalities.	Solder the capacitor to the test jig (glass epoxy board) in the			
		Capacitance	Within the specified tolerance.	same manner and under the same conditions as (10). The			
11	Vibration	D.F.	0.1max.	capacitor shall be subjected to a simple harmonic motion having a total amplitude of 1.5mm, the frequency being varied uniformly between the approximate limits of 10 and 55Hz. The frequency range, from 10 to 55Hz and return to 10Hz, shall be traversed in approximately 1 minute. This motion shall be applied for a period of 2 hours in each 3 mutually perpendicular directions (total of 6 hours).			

Continued from the preceding page.

	Continued fr	om the prec	eaing page.					
No.	Ite	em	Specification		Tes	st Method	d	
12	12 Deflection		No crack or marked defect shall occur. 20 50 Pressurizing speed : 1.0mm/sec. Pressurize Capacitance meter 45 45		a eutectic sold Fig. 3. The solone The reflow meth	er. Then dering sh od and sl	ass epoxy boa apply a force in all be done eith hall be conducted and free of defe	n the direc- ner with an ted with
				Туре	а		b	С
			Fig.3	GRM18	1.0		3.0	1.2
				GRM21	1.2			1.65
				GRM32	2.2		5.0	2.9
				GRM43	3.5		7.0	3.7
				GRM55	4.5		8.0	5.6
						Fig.2		(in mm)
13	Solderabi Terminati		75% of the terminations is to be soldered evenly and continuously.	rosin (JIS-K-59 Preheat at 80	Immerse the capacitor in a solution of ethanol (JIS-K-8101) and rosin (JIS-K-5902) (25% rosin in weight propotion). Preheat at 80 to 120°C for 10 to 30 seconds. After preheating, immerse in eutectic solder solution for 2±0.5 seconds at			eheating,
		Appearance	No marking defects.	Preheat the capacitor at 120 to 150°C for 1 minute. Immerse the capacitor in a eutectic solder solution at 270±5°C for 10±0.5 seconds. Let sit at room temperature for 48±4 hours, then measure.				
	Resistance	Capacitance Change	R6/R7 : Within ±7.5%					
14	to Soldering	D.F.	0.1max.					
	Heat	I.R.	50Ω • F min	•Initial measur		·=- + 0°		
		Dielectric Strength	No failure	let sit for 48±4 Perform the in	hours at roon	n tempera	C for one hour ature.	and then
		Appearance	No marking defects.	Fix the capaci	tor to the supp	ortina iia	in the same ma	anner and
		Capacitance Change	R6/R7 : Within ±7.5%	under the sam according to the	ne conditions a	s (10). Pe eatments	erform the five listed in the fol emperature, th	cycles lowing
		D.F.	0.1max.	sure.				
		I.R.	50Ω • F min	Step	1	2	3	4
15	Temperature Sudden Change			Temp.(℃)	Min. Operating	Room Temp.	Max. Operating	Room Temp.
	Sildingo				Temp.+0/-3	•	Temp.+3/-0	· .
		Dielectric	No failure	Time(min.)	30±3	2 to 3	30±3	2 to 3
		Strength	NO familie	•Initial measur Perform a hea let sit for 48±4 Perform the in	it treatment at I hours at roon	n tempera	C for one hour ature.	and then
		Appearance	No marking defects.	Apply the rate	d voltage at 40	±2℃ and	d 90 to 95% hu	midity for
	High	Capacitance Change	R6/R7 : Within ±12.5%	•Initial measu	· ·	lischarge	current is less	than 50mA.
	Temperature	D.F.	0.2max.			at 150 ±	18℃ for one ho	our and
16	High	I.R.	12.5Ω • F min	then let sit for	48±4 hours at	room ten		
	Humidity		1 111111	Perform initial	measurement	-		
	(Steady)	Dielectric Strength	No failure		t treatment at		C for one hour ature, then mea	

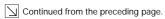
Continued from the preceding page.

No.	Ite	em	Specification	Test Method
		Appearance	No marking defects.	Apply 150% of the rated voltage for 1000±12 hours at the
		Capacitance Change	R6/R7 : Within ±12.5%	maximun operating temperature ±3°C. The charge/discharge current is less than 50mA.
		D.F.	0.2max.	•Initial measurement
17	Durability	I.R. 25Ω•I	25Ω∙F min	Perform initial measurement at 150 ± 18°C for one hour and then let sit for 48±4 hours at room temperature.
				Perform initial measurement.
		Dielectric Strength	No failure	•Measurement after test Perform a heat treatment at 150 ±₁8℃ for one hour and then let sit for 48±4 hours at room temperature, then measure.


High-power Type

■ Features

- 1. Mobile Telecommunication and RF module, mainly.
- 2. Quality improvement of telephone call, Low power Consumption, yield ratio improvement.


■ Applications

VCO, PA, Mobile Telecommunication

Part Number	Dimensions (mm)						
Part Number	L	W	T	е	g min.		
GJ6155	1.0 ±0.05	0.5 ±0.05	0.5 ±0.05	0.15 to 0.3	0.4		

Part Number	TC Code	Rated Voltage (Vdc)	Capacitance (pF)	Length L (mm)	Width W (mm)	Thickness T (mm)
GJ61555C1HR50CB01	COG	50	0.50 ±0.25pF	1.00	0.50	0.50
GJ61555C1HR75CB01	COG	50	0.75 ±0.25pF	1.00	0.50	0.50
GJ61555C1H1R0CB01	COG	50	1.0 ±0.25pF	1.00	0.50	0.50
GJ61555C1H1R1CB01	COG	50	1.1 ±0.25pF	1.00	0.50	0.50
GJ61555C1H1R2CB01	COG	50	1.2 ±0.25pF	1.00	0.50	0.50
GJ61555C1H1R3CB01	COG	50	1.3 ±0.25pF	1.00	0.50	0.50
GJ61555C1H1R5CB01	C0G	50	1.5 ±0.25pF	1.00	0.50	0.50
GJ61555C1H1R6CB01	COG	50	1.6 ±0.25pF	1.00	0.50	0.50
GJ61555C1H1R8CB01	COG	50	1.8 ±0.25pF	1.00	0.50	0.50
GJ61555C1H2R0CB01	COG	50	2.0 ±0.25pF	1.00	0.50	0.50
GJ61555C1H2R2CB01	COG	50	2.2 ±0.25pF	1.00	0.50	0.50
GJ61555C1H2R4CB01	C0G	50	2.4 ±0.25pF	1.00	0.50	0.50
GJ61555C1H2R7CB01	C0G	50	2.7 ±0.25pF	1.00	0.50	0.50
GJ61555C1H3R0CB01	C0G	50	3.0 ±0.25pF	1.00	0.50	0.50
GJ61555C1H3R3CB01	COG	50	3.3 ±0.25pF	1.00	0.50	0.50
GJ61555C1H3R6CB01	COG	50	3.6 ±0.25pF	1.00	0.50	0.50
GJ61555C1H3R9CB01	C0G	50	3.9 ±0.25pF	1.00	0.50	0.50
GJ61555C1H4R0CB01	C0G	50	4.0 ±0.25pF	1.00	0.50	0.50
GJ61555C1H4R3CB01	C0G	50	4.3 ±0.25pF	1.00	0.50	0.50
GJ61555C1H4R7CB01	C0G	50	4.7 ±0.25pF	1.00	0.50	0.50
GJ61555C1H5R0CB01	C0G	50	5.0 ±0.25pF	1.00	0.50	0.50
GJ61555C1H5R1CB01	C0G	50	5.1 ±0.25pF	1.00	0.50	0.50
GJ61555C1H5R6CB01	C0G	50	5.6 ±0.25pF	1.00	0.50	0.50
GJ61555C1H6R0CB01	C0G	50	6.0 ±0.25pF	1.00	0.50	0.50
GJ61555C1H6R0DB01	C0G	50	6.0 ±0.5pF	1.00	0.50	0.50
GJ61555C1H6R2CB01	C0G	50	6.2 ±0.25pF	1.00	0.50	0.50
GJ61555C1H6R8CB01	C0G	50	6.8 ±0.25pF	1.00	0.50	0.50
GJ61555C1H7R0CB01	C0G	50	7.0 ±0.25pF	1.00	0.50	0.50
GJ61555C1H7R0DB01	C0G	50	7.0 ±0.5pF	1.00	0.50	0.50
GJ61555C1H7R5CB01	C0G	50	7.5 ±0.25pF	1.00	0.50	0.50
GJ61555C1H8R0CB01	C0G	50	8.0 ±0.25pF	1.00	0.50	0.50
GJ61555C1H8R0DB01	C0G	50	8.0 ±0.5pF	1.00	0.50	0.50
GJ61555C1H8R2CB01	C0G	50	8.2 ±0.25pF	1.00	0.50	0.50
GJ61555C1H9R0CB01	C0G	50	9.0 ±0.25pF	1.00	0.50	0.50
GJ61555C1H9R0DB01	COG	50	9.0 ±0.5pF	1.00	0.50	0.50
GJ61555C1H9R1CB01	COG	50	9.1 ±0.25pF	1.00	0.50	0.50
GJ61555C1H100JB01	COG	50	10.0 ±5%	1.00	0.50	0.50
GJ61555C1H100RB01	COG	50	10 ±2.5%	1.00	0.50	0.50

Part Number	TC Code	Rated Voltage (Vdc)	Capacitance (pF)	Length L (mm)	Width W (mm)	Thickness T (mm)				
GJ61555C1H120JB01	C0G	50	12 ±5%	1.00	0.50	0.50				
GJ61555C1H150JB01	C0G	50	15 ±5%	1.00	0.50	0.50				
GJ61555C1H180JB01	COG	50	18 ±5%	1.00	0.50	0.50				

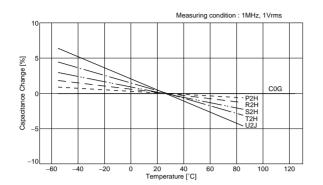
		Specification				
lo. Item			-	Test Method		
		Temperature Compensating Type				
, ,	ure Range	−55 to +125°C				
Rated Voltage		See the previous pages.	may be applied continu When AC voltage is su	efined as the maximum voltage which uously to the capacitor. Uperimposed on DC voltage, VP-P or VO-P, all be maintained within the rated voltage		
Appearar	nce	No defects or abnormalities.	Visual inspection.			
Dimensio	ns	Within the specified dimensions.	Using calipers.			
Dielectric	Strength	No defects or abnormalities.	applied between the te	served when 300% of the rated voltage is erminations for 1 to 5 seconds, provided current is less than 50mA.		
Insulation (I.R.)	Resistance	10,000M Ω min. or 500 Ω • F min. (Whichever is smaller)		nce shall be measured with a DC voltage and voltage at 25°C and 75%RH max. and arging.		
Capacita	nce	Within the specified tolerance.	·	all be measured at 25°C at the frequency		
Q		30pF min. : Q≥1,000 30pF max. : Q≥400+20C C : Nominal Capacitance (pF)	Item Char. Frequency Voltage			
	Capacitance Change	Within the specified tolerance. (Table A-1)	each specified temper	· ·		
	Temperature Coefficent	Within the specified tolerance. (Table A-1)	The temperature coeff			
Capacitance Temperature Characteristics	•	•	Within ±0.2% or ±0.05pF	When cycling the temperature sequentially from step 1 through 5, (C0G: +25°C to+125°C: other temp. coeffs.: +25°C to 85°C) the capacitance shall be within the specified tolerance for the temperature coefficient and capacitance change as Table A. The capacitance drift is calculated by dividing the differences between the maximum and minimum measured values in the step 1, 3 and 5 by the cap value in step 3. Step Temperature(°C)		
	Di iit	(Williamovor to langur.)	1	25±2		
			2	-55±3		
			3	25±2		
				125±3		
			5	25±2		
Adhesive Strength of Termination		No removal of the terminations or other defect shall occur.	Fig.1 using a eutectic s with the test jig for 10± The soldering shall be of method and shall be co	the test jig (glass epoxy board) shown in colder. Then apply a 5N force in parallel 1sec. done either with an iron or using the reflow onducted with care so that the soldering is ects such as heat shock. Solder resist Baked electrode or copper foil a b c 0.4 1.5 0.5 (in mm)		
	Appearar Dimension Dielectric Insulation (I.R.) Capacita Q Capacitance Temperature Characteristics	Rated Voltage Appearance Dimensions Dielectric Strength Insulation Resistance (I.R.) Capacitance Q Capacitance Change Temperature Coefficent Capacitance Characteristics Capacitance Characteristics Capacitance Characteristics Capacitance Characteristics Capacitance Characteristics Capacitance Drift	Temperature Range Rated Voltage See the previous pages. Appearance No defects or abnormalities. Dimensions Within the specified dimensions. Dielectric Strength No defects or abnormalities. Insulation Resistance (I.R.) Capacitance Within the specified tolerance. Q 30pF min.: Q≥1,000 30pF max.: Q≥400+20C C: Nominal Capacitance (pF) Within the specified tolerance. (Table A-1) Capacitance Change Temperature Characteristics Capacitance Drift Within ±0.2% or ±0.05pF (Whichever is larger.)	The rated voltage is demay be applied continued to the previous pages. The rated voltage is demay be applied continued the previous pages. The rated voltage is demay be applied continued the previous pages. The rated voltage is set whichever is larger, strange.		

Continued from the preceding page.

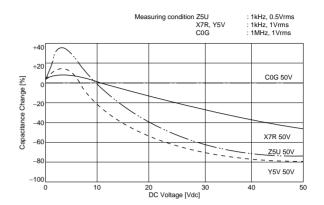
		Specification					
o. Ite	em	Temperature Compensating Type		Tes	st Method	d	
	Appearance	No defects or abnormalities.	Solder the cap	acitor to the te	est jig (gla	ss epoxy board	d) in the
1 Vibration Resistance	Capacitance	Within the specified tolerance. 30pF min.: Q≥1,000 30pF max.: Q≥400+20C C: Nominal Capacitance (pF)	Solder the capacitor to the test jig (glass epoxy board) in the same manner and under the same conditions as (10). The capacitor shall be subjected to a simple harmonic motic having a total amplitude of 1.5mm, the frequency being varial uniformly between the approximate limits of 10 and 55Hz. The frequency range, from 10 to 55Hz and return to 10Hz, shall traversed in approximately 1 minute. This motion shall be applied for a period of 2 hours in each 3 mutually perpendic directions (total of 6 hours).				ic motion ng varied 55Hz. The z, shall be all be
		No cracking or marking defects shall occur.	Solder the capacitor to the test jig (glass epoxy boards): in Fig.2 using a eutectic solder. Then apply a force in the direction shown in Fig.3. The soldering shall be done either with an iron or using t reflow method and shall be conducted with care so that soldering is uniform and free of defects such as heat should be conducted with care so that soldering is uniform and free of defects such as heat should be conducted with care so that soldering is uniform and free of defects such as heat should be conducted with care so that soldering is uniform and free of defects such as heat should be conducted with care so that soldering is uniform and free of defects such as heat should be conducted with care so that soldering is uniform.				ng the
2 Deflectio	Deflection Type a b c GJ615 0.4 1.5 0.5 (in mm) Fig.2		20 50 Pressurizing speed: 1.0mm/sec. Pressurize R230 Flexure: ≤1 Capacitance meter 45 45 (in mm))
3 Solderab Terminat	•	75% of the terminations is to be soldered evenly and continuously.	Immerse the capacitor in a solution of ethanol (JIS-K-8101) and rosin (JIS-K-5902) (25% rosin in weight proportion). Preheat at 80 to 120°C for 10 to 30 seconds. After preheating, immerse in eutectic solder solution for 2±0.5 seconds at 230±5°				
		The measured and observed characteristics shall satisfy the specifications in the following table.					
	Appearance	No marking defects.					
Resistance	Capacitance Change	Within ±2.5% or ±0.25pF (Whichever is larger)	Preheat the capacitor at 120 to 150°C for 1 minute. Immerse the capacitor in a eutectic solder solution at 270±5°c.				
4 to Soldering Heat	Q	30pF and over : Q≥1,000 30pF and below : Q≥400+20C C : Nominal Capacitance (pF)	for 10±0.5 seconds. Let sit at room temperature for 24±2 hours.				
	I.R.	More than 10,000MΩ or 500Ω • F (Whichever is smaller)					
	Dielectric Strength	No failure					
		The measured and observed characteristics shall satisfy the specifications in the following table.	Fig. 4b a second			. th	
	Appearance Capacitance	No marking defects. Within ±2.5% or ±0.25pF (Which programs)	Fix the capacitor to the supporting jig in the same manner an under the same conditions as (10). Perform the five cycles according to the four heat treatments listed in the following ta				
5 Temperature	Change	(Whichever is larger) 30pF and over : Q≥1,000	Let sit for 24±2 Step	hours at room	tempera	ture, then mea	sure.
Cycle	Q	30pF and below : Q≥400+20C C : Nominal Capacitance (pF)		Min. Operating Temp. +3		Max. Operating Temp. ±3	Room Temp.
	I.R.	More than $10,000 \text{M}\Omega$ or $500 \Omega \bullet \text{F}$ (Whichever is smaller)	Time(min.)	30±3	2 to 3	30±3	2 to 3
	Dielectric Strength	No failure					
		The measured and observed characteristics shall satisfy the specifications in the following table.					
	Appearance	No marking defects.	Sit the capacitor at 40±2°C and 90 to 95% humidity for 500±12 hours.				
Humidity, 6 Steady	Capacitance Change	Within ±5% or ±0.5pF (Whichever is larger)					
State	Q	30pF and over. : Q≥350 10pF and over, 30pF and below : Q≥275+ ½ C 10pF and below : Q≥200+10C C : Nominal Capacitance (pF)	Remove and let sit for 24±2 hours (temperature compensating type) at room temperature, then measure.				
	I.R.	More than 10,000MΩ or 500Ω • F (Whichever is smaller)					

Continued from the preceding page.

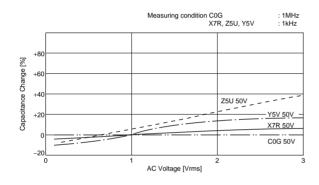
			Specification	
No.	. Item		Temperature Compensating Type	Test Method
			The measured and observed characteristics shall satisfy the specifications in the following table.	
		Appearance	No marking defects.	
	Llumiditu	Capacitance Change	Within ±7.5% or ±0.75pF (Whichever is larger)	Apply the rated voltage at 40±2℃ and 90 to 95% humidity for 500±12 hours.
17	Humidity Load	Q	30pF and over : Q≧200 30pF and below : Q≧100+ ½ C C : Nominal Capacitance (pF)	Remove and let sit for 24±2 hours at room temperature, then measure. The charge/discharge current is less than 50mA.
		I.R.	More than 500M Ω or 25 Ω • F (Whichever is smaller)	
		Dielectric Strength	No failure	
			The measured and observed characteristics shall satisfy the specifications in the following table.	
		Appearance	No marking defects.	
	High	Capacitance Change	Within ±3% or ±0.3pF (Whichever is larger)	Apply 200% of the rated voltage for 1000±12 hours at the
18	High Temperature Load	Q	30pF and over. : Q≥350 10pF and over, 30pF and below : Q≥275+ ½ C 10pF and below : Q≥200+10C C : Nominal Capacitance (pF)	 maximum operating temperature ±3°C. Let sit for 24±2 hours (temperature compensating type) at room temperature, then measure. The charge/discharge current is less than 50mA.
		I.R.	More than 1,000M Ω or 50 Ω • F (Whichever is smaller)	
		Dielectric Strength	No failure	
19	ESR		0.5pF≦C≦1pF : 350mΩ . pF below 1pF <c≦5pf 300mω="" :="" below<br="">5pF<c≦10pf 250mω="" :="" below<="" td=""><td>The ESR shall be measured at room Temp. and frequency 1±0.2GHz with the equivalent of BOONTON Model 34A.</td></c≦10pf></c≦5pf>	The ESR shall be measured at room Temp. and frequency 1±0.2GHz with the equivalent of BOONTON Model 34A.
			10pF <c≦20pf 400mω="" :="" below<="" td=""><td>The ESR shall be measured at room Temp. and frequency 500±50MHz with the equivalent of HP8753B.</td></c≦20pf>	The ESR shall be measured at room Temp. and frequency 500±50MHz with the equivalent of HP8753B.

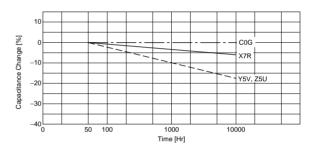

Table A

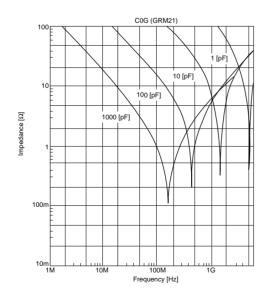
	T 0 "	Capacitance Change from 25℃ Value (%)						
Char. Code	Temp. Coeff. (ppm/℃) Note 1	-5	5℃	−30°C		−10 °C		
	(ppiii/ c) Note 1	Max.	Min.	Max.	Min.	Max.	Min.	
5C	0±30	0.58	-0.24	0.40	-0.17	0.25	-0.11	

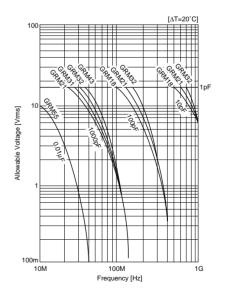

Note 1 : Nominal values denote the temperature coefficient within a range of 25 to 125°C.(for CO Δ)

GRM/GRP Series Data


■ Capacitance-Temperature Characterstics

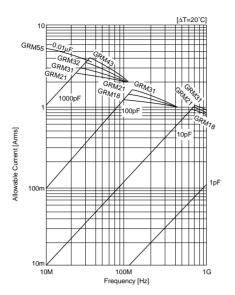

■ Capcitance-DC Voltage Characteristics

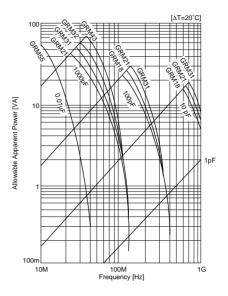

■ Capcitance-AC Voltage Characteristics


■ Capacitance Change-Aging

■ Impedance-Frequency Characteristics

■ Allowable Voltage-Frequency



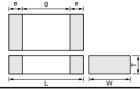

GRM/GRP Series Data

Continued from the preceding page.

■ Allowable Current-Frequency

■ Allowable Appearant Power

for Smoothing


■ Features

- 1. Heat generation is low at high frequency because of low dielectric loss.
- 2. Compared with aluminum electrolytic capacitors, capacitance can be lower to obtain the same smoothing performance.
- 3. Ceramic capacitor has no polarity and ensures long life time.

■ Applications

- DC-DC converter
- Noise elimination LCD bias circuit (Use for only alumina, paper or glass epoxy board)

Part Number	Dimensions (mm)					
rait Number	L	W	Т	e min.	g min.	
GJ221B	2.0 ±0.1	1.25 ±0.1	1.25 ±0.1	0.2 to 0.7	0.7	
GJ231M	3.2 ±0.15	1.6 ±0.15	1.15 ±0.1	0.3 to 0.8	1.5	
GJ232N		2.5 ±0.2	1.35 ±0.15	0.3	1.0	
GJ232C	3.2 ± 0.3		1.6 ±0.15			
GJ232R			1.8 ±0.2			
GJ243R	4.5 ±0.4	3.2 ±0.3	1.8 ±0.2	0.3	2.0	
GJ243X	4.5 ±0.4		2.2 ±0.3		Z.U L	

Part Number	тс	Rated Voltage (Vdc)	Capacitance (μF)	Length L (mm)	Width W (mm)	Thickness T (mm)
GJ221BF50J106ZD01	Y5V	6.3	10 +8020%	2.00	1.25	1.25
GJ231MF50J226ZD01	Y5V	6.3	22 +8020%	3.20	1.60	1.15
GJ232CF50J476ZD01	Y5V	6.3	47 +8020%	3.20	2.50	1.60
GJ243RF50J107ZD11	Y5V	6.3	100 +8020%	4.50	3.20	1.80
GJ232NF51A226ZD01	Y5V	10	22 +8020%	3.20	2.50	1.35
GJ243RF51A107ZD11	Y5V	10	100 +8020%	4.50	3.20	1.80
GJ232RF51H475ZD01	Y5V	50	4.7 +8020%	3.20	2.50	1.80
GJ243XF51H106ZD12	Y5V	50	10 +8020%	4.50	3.20	2.20
GJ232RF52A105ZD01	Y5V	100	1 +8020%	3.20	2.50	1.8

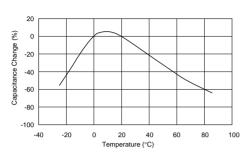
No.	Item	Specification	Test Method		
1	Operating Temperature Range	F5 : -30°C to 85°C			
2	Rated Voltage	See the previous pages.	The rated voltage is defined as the maximum voltage which may be applied continuously to the capacitor. When AC voltage is superimposed on DC voltage, V ^{p,p} or V ^{o,p} , whichever is larger, shall be maintained within the rated voltage range.		
3	Appearance	No defects or abnormalities.	Visual inspection.		
4	Dimensions	Within the specified dimension.	Using calipers.		
5	Dielectric Strength	No defects or abnormalities.	No failure shall be observed when 250% of the rated voltage is applied between the both terminations for 1 to 5 seconds, provided the charge/discharge current is less than 50mA.		
6	Insulation Resistance	More than 10,000M Ω or 500 Ω · F. (Whichever is smaller)	The insulation resistance shall be measured with a DC voltage not exceeding the rated voltage at normal temperature and humidity and within 2 minutes* of charging. *5minutes for c>47µF.		
7	Capacitance	Within the specified tolerance.	The capacitance/D.F. shall be measured at 25°C at the fre-		
8	Dissipation Factor (D.F.)	0.07 max. (50/100V) 0.09 max. (10/16/25V) 0.15 max. (6.3V)	quency and voltage shown in the table. Capacitance Frequency Voltage C≤10μF 1±0.1kHz 1±0.2Vrms C>10μF 120±24Hz 0.5±0.1Vrms		
9	Capacitance Temperature Characteristics	Char.Temp. RangeReference Temp.Cap. Change RateF5-30 to +85°C25°CWithin ±82%	The capacitance change shall be measured after 5 min. at each specified temperature stage. The ranges of capacitance change compared to 25°C with the temperature ranges shown in the table shall be within the specified ranges.		
10	Adhesive Strength of Termination	No removal of the terminations or other defects shall occur.	Solder the capacitor on the testing jig (glass epoxy board) shown in Fig.1 using a eutectic solder. Then apply 5N force in parallel with the test jig for 10±1 sec. The soldering shall be done either with an iron or using the reflow method and shall be conducted with care so that the soldering is uniform and free of defect such as heat shock. Type a b c GJ218 1.0 3.0 1.2		
		Solder resist Baked electrode or copper foil Fig.1	GJ221 1.2 4.0 1.65 GJ231 2.2 5.0 2.0 GJ232 2.2 5.0 2.9 GJ243 3.5 7.0 3.7 (in mm)		
11	Vibration Resistance	Item	Solder the capacitor on the testing jig (glass epoxy board) in the same manner and under the same conditions as (10). The capacitor shall be subjected to simple harmonic motion having a total amplitude of 1.5mm, the frequency being varied uniformly between the approximate limits of 10 and 55Hz. The frequency range, from 10 to 55Hz and return to 10Hz, shall be traversed in approximately 1 minute. This motion shall be applied for a period of 2 hours in each 3 mutually perpendicular directions (total of 6 hours).		

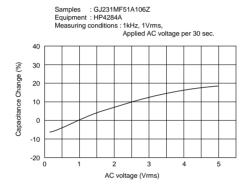
Continued on the following page.

Continued from the preceding page.

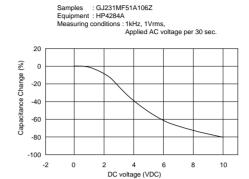
No.	Item	Specification	Test Method
		No cracks or marking defects shall occur. 20, 50 Pressurizing	Solder the capacitor to the test jig (glass epoxy boards) shown in Fig.2 using a eutectic solder. Then apply a force in the direction shown in Fig.3 for 5±1 sec. The soldering shall be done either with an iron or using the reflow method and shall be conducted with care so that the soldering is uniform and free of defects such as heat shock.
12	Deflection	speed : 1.0mm/sec. Pressurize R230 Flexure : ≦1 Capacitance meter 45 45	a 100 t=1.6mm
		Fig.3	Fig. 2 Type a b c GJ218 1.0 3.0 1.2 GJ221 1.2 4.0 1.65 GJ231 2.2 5.0 2.0 GJ232 2.2 5.0 2.9 GJ243 3.5 7.0 3.7 (in mm)
13	Solderability of Termination	75% of the terminations is to be soldered evenly and continuously.	Immerse the capacitor first ethanol (JIS-K-8101)a solution of rosin (JIS-K-5902) (25% rosin in weight proportion), then in an eutectic solder solution for 2±0.5 seconds at 230±5°C after preheating in the following table. then set it for 48±4 hours at room temperature and measure.
14	Resistance to Soldering Heat	The measured values shall satisfy the values in the following table.	The capacitor shall be set for 48 ± 4 hours at room temperature after one hour heat of treatment at $150.^{+0}_{-10}$ °C. Immerse the capacitor in a eutectic solder solution at 270 ± 5 °C for 10 ± 0.5 seconds after preheating in the flowing table. Then set it for $48T4$ hours at room temperature and measure.
15	Temperature Cycle	$\begin{tabular}{l lllllllllllllllllllllllllllllllllll$	The capacitor shall be set for 48 ± 4 hours at room temperature after one hour heat of treatment at 150^{+0}_{-10} °C. Then measure for the initial measurement. Fix capacitor to the supporting jig in the same manner and under the same conditions as in (10) and conduct the five cycles according to the temperature and time shown in the following table. Set it for 48 ± 4 hours at room temperature, then measure. $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
16	Humidity Steady State	$\begin{tabular}{l lllllllllllllllllllllllllllllllllll$	Set the capacitor for 500±12 hours at 40±2°C and 90 to 95% humidity. Take it out and set it for 48T4 hours at room temperature, then measure.
17	Humidity Load	$\begin{tabular}{l lllllllllllllllllllllllllllllllllll$	Apply the rated voltage for 500±12 hours at 40±2°C and 90 to 95% humidity and set it for 48±4 hours at room temperature, then measure. The charge/discharge current is less than 50mA.

Continued from the preceding page.

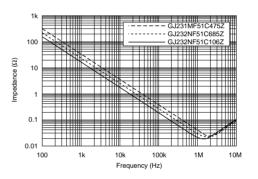

No.	Item		Specification	Test Method
		No marked defect.		The voltage treatment shall be given to the capacitor, in which
		Item	Specification	a DC voltage of 200%* the rated voltage is applied for one hour
		Appearance	No marked defect	at the maximum operating temperature ±3°C then it shall be set
	Capacitance Change Within ±30%		Within ±30%	for 48±4 hours at room temperature and the measurement shall
18	High Temperature	I. R.	More than 1,000M Ω or 50 $\Omega \cdot F$	be conducted. Then apply the above mentioned voltage contin-
	Load	I. K.	(Whichever is smaller)	uously for 1000±12 hours at the same temperature, remove it
	D.F.	D.F.	50, 100V 10, 16, 25V 6.3V	from the bath, and set it for 48±4 hours at room temperature,
		D. Γ.	0.1 max. 0.125 max. 0.2 max.	then measure. The charge/discharge current is less than
		Dielectric Strength No failure		50mA.
				*150% for C>10µF


Characteristics Data

■ Capacitance-Temperature Characterstics

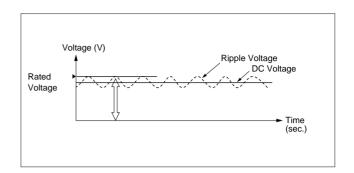

Samples : GJ231MF51A106Z Equipment : HP4284A Measuring conditions : 1kHz, 1Vrms

■ Capcitance-AC Voltage Characteristics



■ Capcitance-DC Voltage Characteristics

■ Impedance-Frequency Characteristics


Equipment : HP4192A

Reference Data

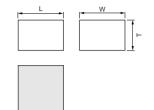
■ Allowable Ripple Current

Ripple current should be less than "Allowable ripple current value" shown in the following table. And temperature rise of the chip surface (ΔT) should be below 20°C. When AC and DC voltage are superimposed, keep the peak value of the voltage within the rated voltage.

Allowable ripple current value

Series	Datad Valtage	Allowable ripple current value (r.m.s.)			
Series	Rated Voltage	100kHz≦ f <300kHz	300kHz≦ f <500kHz	500kHz≦ f <1MHz	
GJ221		1.4Ar.m.s.	1.5Ar.m.s.	1.6Ar.m.s.	
GJ231	4V / 6.3V	1.5Ar.m.s.	1.6Ar.m.s.	1.6Ar.m.s.	
GJ232	40 / 0.30	1.7Ar.m.s.	1.8Ar.m.s.	2.0Ar.m.s.	
GJ243		1.4Ar.m.s.	1.3Ar.m.s.	1.2Ar.m.s.	
GJ218		1.4Ar.m.s.	1.5Ar.m.s.	1.6Ar.m.s.	
GJ231	10V	1.5Ar.m.s.	1.6Ar.m.s.	1.6Ar.m.s.	
GJ232	100	1.7Ar.m.s.	1.8Ar.m.s.	2.0Ar.m.s.	
GJ243		1.4Ar.m.s.	1.3Ar.m.s.	1.2Ar.m.s.	
GJ231	16V	1.5Ar.m.s.	1.6Ar.m.s.	1.6Ar.m.s.	
GJ232	IOV	1.7Ar.m.s.	1.8Ar.m.s.	2.0Ar.m.s.	
GJ232	25V / 35V / 50V	2.0Ar.m.s.	2.2Ar.m.s.	2.2Ar.m.s.	
GJ243	230 / 330 / 300	2.0Ar.m.s.	2.2Ar.m.s.	2.2Ar.m.s.	
GJ232	100V	1.6Ar.m.s. 1.7Ar.m.s. 1.8Ar		1.8Ar.m.s.	

Microchips


■ Features

- 1. Better micro wave characteristics.
- 2. Suitable for by-passing.
- 3. High density mounting.

■ Applications

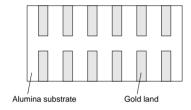
- Optical device for telecommunication.
- IC, IC packaging built-in.
- Measuring equipment.

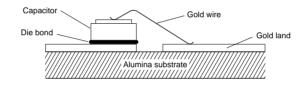
Part Number	Dimensions (mm)				
Part Number	L	W	T		
GMA05X	0.5 ±0.05	0.5 ±0.05	0.35 ±0.05		
GMA085	0.8 ±0.05	0.8 ±0.05	0.5 ±0.1		

Part Number	TC Code	Rated Voltage (Vdc)	Capacitance	Length L (mm)	Width W (mm)	Thickness T (mm)
GMA05XF51A153ZD01	Y5V	10	15000pF +80/-20%	0.5	0.5	0.35
GMA085F51A104ZD01	Y5V	10	0.1μF +80/-20%	0.8	0.8	0.5
GMA05XR71C102MD01	X7R	16	1000pF ±20%	0.5	0.5	0.35
GMA05XR71C152MD01	X7R	16	1500pF ±20%	0.5	0.5	0.35
GMA05XR71C222MD01	X7R	16	2200pF ±20%	0.5	0.5	0.35
GMA085R71C103MD01	X7R	16	10000pF ±20%	0.8	0.8	0.5
GMA05XF51C472ZD01	Y5V	16	4700pF +80/-20%	0.5	0.5	0.35
GMA05XF51C682ZD01	Y5V	16	6800pF +80/-20%	0.5	0.5	0.35
GMA085F51C473ZD01	Y5V	16	47000pF +80/-20%	0.8	0.8	0.5
GMA05XR71H471MD01	X7R	50	470pF ±20%	0.5	0.5	0.35

No.	Ite	em	S	specification		Tes	st Method	d	
1	Operating Tempera		R7: -55°C to +125°C F5: -30°C to +85°C						
2	Rated Vo	ltage	See the previous pages.		The rated voltage is defined as the maximum voltage which may be applied continuously to the capacitor. When AC voltage is superimposed on DC voltage, V ^{p,p} or V ^{op} , whichever is larger, shall be maintained within the rated voltage range.			P-P or VO-P,	
3	Appearar	nce	No defects or abnormalitie	es.	Visual inspect	ion.			
4	Dimensio	ns	See the previous pages.		Visual inspect	ion.			
5	Dielectric	: Strength	No defects or abnormalitie	s.	voltage is app	lied between th	ne both te	oltage of 250% rminations for 1 current is less th	1 to 5 sec-
6	Insulation (I.R.)	Resistance	10,000MΩ min.		not exceeding		age at noi	asured with a D rmal temperatu ging.	•
7	Capacita	nce	Within the specified tolera	nce.		ice shall be me d 1±0.2Vr.m.s.		t 25℃ with 1±0 e.).1kHz in
8	Dissipatio (D.F.)	on Factor	R7 : 0.035 max. F5 : 0.09 max. (for 16V) : 0.125 max. (for 10V)		D.F. shall be i capacitance.	measured unde	er the san	ne conditions a	t the
9	Capacitar Temperat Character	ure	Char. Temp. Range R7 −55 to +125℃ F5 −30 to +85℃	The range of capacitance change in reference to 25°C with the temperature range shown in the table shall be within the specified ranges. The capacitance change shall be measured after 5 min. and each specified temperature stage.			thin the		
10	Mechanical Strength Mechanical Strength			MIL-STD-883 Method 2011 Condition D Mount the capacitor on a gold metallized alumina substrate with Au-Sn (80/20) and bond a 20µm (0.0008 inch) gold wire to the capacitor terminal using an ultrasonic wedge bond. Then, pull wire.			re to the		
	J	Die Shear Strength	Die Shear force : 200g mir	n.	MIL-STD-883 Method 2019 Mount the capacitor on a gold metallized alumina substrate with Au-Sn (80/20). Apply the force parallel to the substrate.				
		Appearance	No defects or abnormalitie	es.					
	Vibration	Capacitance	Within the specified tolera	nce.		•		n return to 10H: ch) max_total e	
11	Resistance	D.F.	R7 : 0.035 max. F5 : 0.09 max. (for 16V) : 0.125 max. (for 10V)		1 minute. Amplitude: 1.5 mm (0.06 inch) max. total excursion Apply this motion for a period of 2 hours in each of 3 mutually perpendicular directions (total 6 hours).				
12	table. Appe		table. Item Appearance Capacitance Change	Specification No marked defect R7 ······ Within±7.5% F5 ····· Within±20%	after one hour for the initial n jig in the same and conduct t time shown in	heat of treatmessurement. It manner and the five cycles a	nent at 15 Fix the ca under the according	ours at room ter $0 \stackrel{+}{=} \stackrel{\circ}{=} \stackrel{\circ}{\sim} \stackrel{\circ}{\sim}$, then repaction to the same condition to the temperatification it for 48 ± 4 hours	measure supporting ns as (11) atures and
			I.R.	More than 10,000M Ω R7 ······ 0.035 max.	Step	1	2	3	4
			D.F.	F5 ····· 0.09 max.(for 16V)	Temp.(°C)	Min. Operating		Max. Operating	
			Dielectric Strength	0.125 max.(for 10V) No failure		Temp. ±3 30±3	Temp.	Temp. ±3 30±3	Temp.
				all satisfy the values in the following Specification	Time(min.)	30±3	2103	30±3	2 to 3
			Appearance	No marked defect	Set the capac	itor for 500±12	2 hours at	: 40±20℃, in 90) to 95%
13	Humidity		Capacitance Change	R7 ······ Within±12.5% F5 ····· Within±30%	humidity.				
	(Steady S	state)	I.R.	More than 1,000MΩ	Take it out an measure.	d set it for 48±	4 hours a	t room tempera	ature, then
			D.F.	R7 ······ 0.05 max. F5 ····· 0.125 max.(for 16V) 0.15 max.(for 10V)					
			Dielectric Strength	No failure					

Continued on the following page.

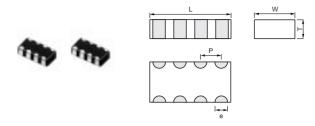




Continued from the preceding page.

No.	Item	S	pecification	Test Method
14	Humidity Load	The measured values shatable. Item Appearance Capacitance Change I.R. D.F. Dielectric Strength	Specification No marked defect R7 ····· Within±12.5% F5 ···· Within±436% More than 500MΩ R7 ···· 0.05 max. F5 ···· 0.125 max.(for 16V) 0.15 max.(for 10V) No failure	Apply the rated voltage for 500±12 hours at 40±20°C, in 90 to 95% humidity and set it for 48±4 hours at room temperature, then measure. The charge/discharge current is less than 50mA. • Initial measurement for Y5V Perform a heat treatment at 150±9°° °C for one hour and then let sit for 48±4 hours at room temperature. Perform the initial measurement.
15	High Temperature Load		Specification No marked defect R7 ······ Within±12.5% F5 ····· Within±438% More than 1,000MΩ R7 ······ 0.05 max. F5 ····· 0.125 max.(for 16V) 0.15 max.(for 10V) No failure	A voltage treatment shall be given to the capacitor, in which a DC voltage of 200% the rated voltage is applied for one hour at the maximum operating temperature ±3°C then it shall be set for 48±4 hours at room temperature and the initial measurement shall be conducted. Then apply the above mentioned voltage continuously for 1000±12 hours at the same temperature, remove it from the bath, and set it for 48±4 hours at room temperature, then measure. The charge/discharge current is less than 50mA.

Mounting for testing: The capacitors shall be mounted on the substrate as shown below using die bonding and wire bonding when tests No. 11 to 15 are performed.


Capacitor Arrays

■ Features

- 1. High density mounting due to mounting space saving.
- 2. Mounting cost saving.

■ Applications

General electronic equipment

Part Number	Dimensions (mm)						
Part Number	L	W	Т	Р	е		
GNM314	314 3.2 ±0.15	1 6 ±0 15	0.8 ±0.1	0.8 ±0.1	0.4.10.15		
GINIVIS 14	3.2 ±0.15	1.0 ±0.15	1.0 ±0.1		0.4 ±0.15		

Temperature Compensating Type

Part Number	GNM31				
LxW	3.2x1.6				
тс	C0G (5C)				
Rated Volt.	50 (1H)	100 (2A)			
Capacitance (Capacitance par	rt numbering code) and T(mm) Dimension (T Dimer	nsion part numbering code)			
10pF(100)	0.8(4)	0.8(4)			
11pF(110)	0.8(4)	0.8(4)			
12pF(120)	0.8(4)	0.8(4)			
13pF(130)	0.8(4)	0.8(4)			
15pF(150)	0.8(4)	0.8(4)			
16pF(160)	0.8(4)	0.8(4)			
18pF(180)	0.8(4)	0.8(4)			
20pF(200)	0.8(4)	0.8(4)			
22pF(220)	0.8(4)	0.8(4)			
24pF(240)	0.8(4)	0.8(4)			
27pF(270)	0.8(4)	0.8(4)			
30pF(300)	0.8(4)	0.8(4)			
33pF(330)	0.8(4)	0.8(4)			
36pF(360)	0.8(4)	0.8(4)			
39pF(390)	0.8(4)	0.8(4)			
43pF(430)	0.8(4)	0.8(4)			
47pF(470)	0.8(4)	0.8(4)			
51pF(510)	0.8(4)	0.8(4)			
56pF(560)	0.8(4)	0.8(4)			
62pF(620)	0.8(4)	0.8(4)			
68pF(680)	0.8(4)	0.8(4)			
75pF(750)	0.8(4)	0.8(4)			
82pF(820)	0.8(4)	0.8(4)			
91pF(910)	0.8(4)	0.8(4)			
100pF(101)	0.8(4)	0.8(4)			
110pF(111)	0.8(4)	0.8(4)			
120pF(121)	0.8(4)	0.8(4)			
130pF(131)	0.8(4)	0.8(4)			
150pF(151)	0.8(4)	0.8(4)			
160pF(161)	0.8(4)				
180pF(181)	0.8(4)				

Continued from the preceding page.

Part Number	GNM31					
LxW	3.2	x1.6				
тс	C0G (5C)					
Rated Volt.	50 (1H)	100 (2A)				
Capacitance (Ca	Capacitance (Capacitance part numbering code) and T(mm) Dimension (T Dimension part numbering code)					
200pF(201)	0.8(4)					
220pF(221)	0.8(4)					
240pF(241)	0.8(4)					
270pF(271)	0.8(4)					
300pF(301)	0.8(4)					
330pF(331)	0.8(4)					
360pF(361)	0.8(4)					

The part numbering code is shown in each (). The (4) code in T(mm) means number of elements (four). Dimensions are shown in mm and Rated Voltage in Vdc.

High Dielectric Constant Type

Part Number				GNM31					
LxW	3.2x1.6								
тс		X7R (R7)				Y5V (F5)			
Rated Volt.	16 (1C)	25 (1E)	50 (1H)	100 (2A)	16 (1C)	50 (1H)	100 (2A)		
Capacitance (Capa	citance part nur	nbering code) and	T(mm) Dimension (T Dimension part r	numbering code)				
220pF(221)				0.8(4)					
270pF(271)				0.8(4)					
330pF(331)				0.8(4)					
390pF(391)			0.8(4)	0.8(4)					
470pF(471)			0.8(4)	0.8(4)					
560pF(561)			0.8(4)	0.8(4)					
680pF(681)			0.8(4)	0.8(4)					
820pF(821)			0.8(4)	0.8(4)					
1000pF(102)			0.8(4)	0.8(4)					
1200pF(122)			0.8(4)	0.8(4)					
1500pF(152)			0.8(4)	0.8(4)					
1800pF(182)			0.8(4)	0.8(4)					
2200pF(222)			0.8(4)	0.8(4)			0.8(4)		
2700pF(272)			0.8(4)	0.8(4)					
3300pF(332)			0.8(4)	0.8(4)			0.8(4)		
3900pF(392)			0.8(4)	0.8(4)					
4700pF(472)			0.8(4)	0.8(4)			0.8(4)		
5600pF(562)			0.8(4)						
6800pF(682)			0.8(4)						
8200pF(822)			0.8(4)						
10000pF(103)			0.8(4)						
12000pF(123)			0.8(4)						
15000pF(153)			0.8(4)						
18000pF(183)		0.8(4)	.,,						
22000pF(223)	0.8(4)	, ,				0.8(4)			
27000pF(273)	0.8(4)					. ,			
33000pF(333)	0.8(4)					0.8(4)			
39000pF(393)	0.8(4)					. ,			
47000pF(473)	1.0(4)					0.8(4)			
68000pF(683)	1.0(4)				0.8(4)	. ,			
0.10μF(104)	1.0(4)				0.8(4)				
0.15μF(154)	(*/				0.8(4)				

The part numbering code is shown in each (). The (4) code in T(mm) means number of elements (four). Dimensions are shown in mm and Rated Voltage in Vdc.

				Specification			
No.	Ite	em	Temperature Compensating Type	High Dielectric Constant Type		Test Method	
1	Operating Tempera		5C : -55 to +125℃	R7 : −55 to +125°C F5 : −30 to +85°C			
2	Rated Voltage See the previous page.		The rated voltage is do may be applied contin When AC voltage is so whichever is larger, shrange.	uously to the capaci uperimposed on DC	tor. voltage, V ^{p.p} or V ^{o.p} ,		
3	Appearar	nce	No defects or abnormalit	es.	Visual inspection.		
4	Dimensio	ons	Within the specified dime	ension.	Using calipers.		
5	Dielectric	: Strength	No defects or abnormalit	ies.	No failure shall be obs (C0G) or 250% of the between the termination charge/discharge curro	rated voltage (X7R ons for 1 to 5 second	and Y5V) is applied ds, provided the
6	6 Insulation Resistance (I.R.)		More than 10,000MΩ or	500Ω • F (Whichever is smaller)	The insulation resistar not exceeding the rate within 2 minutes of characteristics.	ed voltage at 25℃ an	
7	Capacita	nce	Within the specified toler	ance.	The capacitance/Q/D.		d at 25℃ at the fre-
			30pF min. : Q≧1,000	Char. 25V min. 16V	quency and voltage share.		R7, F5
8	Q/Dissipat (D.F.)	tion Factor	30pF max. : Q≥400+20C C : Nominal Capacitance	R7 0.025 max. 0.035 max.	Frequency	1±0.1MHz	1±0.1MHz
	(D.1.)		(pF)	F5 0.05 max. 0.07 max.	Voltage	0.5 to 5Vr.m.s.	1±0.2Vr.m.s.
9	Capacitance Temperature Characteristics	Capacitance Change Temperature Coefficient Capacitance Drift	Within the specified tolerance. (Table A-5) Within the specified tolerance. (Table A-5) Within ±0.2% or ±0.05pF (Whichever is larger)	Char. Temp. Range. Reference Temp. Change Change R7 −55to +125℃ 25℃ Within±15% F5 −30to +85℃ 25℃ Within±22%	capacitance measu. When cycling the te through 5, the capa- tolerance for the te change as Table A The capacitance d differences betwee values in the step 1 Step 1 2 3 4 5 (2) High Dielectric Con The ranges of capa	ature stage. Densating Type Defficient is determinated in step 3 as a reemperature sequent acitance shall be with the maximum and the maximum	ned using the seference. ially from step 1 hin the specified ht and capacitance ividing the minimum measured b. value in step 3. ture(°C) 2 43 2 53
10	Adhesive Strength of Termination		No removal of the termin	ations or other defects shall occur.	Solder the capacitor to Fig.1 using a eutectic with the test jig for 10-1 The soldering shall be reflow method and shadering is uniform and to the soldering is uniform and to the soldering is uniform.	solder. Then apply 5 £1 sec. done either with an all be conducted with	iron or using the n care so that the solars heat shock.

Continued on the following page.

< .	0	£	e preceding	
N	Continued	rrorn tn	e preceaina	page.

Z	Continued fr	om the prec	eding page.					
	Specification							
No.	Ite	em	Temperature Compensating Type	High Dielectric Constant Type	Test Method			
		Appearance	No defects or abnormaliti	es.	Solder the capacitor to the test jig (glass epoxy board) in the same manner and under the same conditions as (10).			
		Capacitance	Within the specified tolera	ance.				
11	Vibration Resistance	Q/D.F.	30pF min. : Q≥1000 30pF max. : Q≥400+20C C : Nominal Capacitance (pF)	Char. 25V min. 16V R7 0.025 max. 0.035 max. F5 0.05 max. 0.07 max.	The capacitor shall be subjected to a simple harmonic motion having a total amplitude of 1.5mm, the frequency being varied uniformly between the approximate limits of 10 and 55Hz. The frequency range, from 10 to 55Hz and return to 10Hz, sha be traversed in approximately 1 minute. This motion shall be applied for a period of 2 hours in each 3 mutually perpendicula directions (total of 6 hours).			
			No cracking or marking d	lefects shall occur.	Solder the capacitor to the test jig (glass epoxy boards) shown in Fig.2 using a eutectic solder. Then apply a force in the direction shown in Fig.3. The soldering shall be done either with an iron or using the reflow method and shall be conducted with care so that the soldering is uniform and free of defects such as			
Deflection 12 Deflection		Pressurizing speed : 1.0mm/sec. Pressurize R230 Capacitance meter 45 45 (in mm) Fig. 3						
13		Solderability of Termination 75% of the terminations is to be soldered evenly and continuously.		s to be soldered evenly and	Immerse the capacitor in a solution of ethanol (JIS-K-8101) and rosin (JIS-K-5902) (25% rosin in weight proportion). Preheat at 80 to 120°C for 10 to 30 seconds. After preheating, immerse in eutectic solder solution for 2±0.5 seconds at 230±5°C.			
			The measured and obser specifications in the follow	rved characteristics shall satisfy the wing table.				
		Appearance	No marking defects.		Preheat the capacitor at 120 to 150°C for 1 minute. Immerse the			
		Capacitance Change	Within ±2.5% or ±0.25pF (Whichever is larger)	R7 ······ Within±7.5% F5 ····· Within±20%	capacitor in a eutectic solder solution at 270±5℃ for 10±0.5 seconds. Let sit at room temperature for 24±2 hours (tempera-			
14	Resistance to Soldering Heat	ance 30pF and over : Q≥1,000		R7 0.025 max. 0.035 max.	ture compensating type) or 48±4 hours (high dielectric constant type), then measure. • Initial measurement for high dielectric constant type Perform a heat treatment at 150±0 for one hour and then let sit for 48±4 hours at room temperature. Perform the initial			
		I.R.	More than 10,000MΩ or	500Ω • F (Whichever is smaller)	measurement.			
		Dielectric Strength	No failure					
			The measured and obser specifications in the follow	ved characteristics shall satisfy the wing table.	Fix the capacitor to the supporting jig in the same manner and under the same conditions as (10). Perform the five cycles			
		Appearance	No marking defects.		according to the four heat treatments listed in the following			
		Capacitance Change	Within ±2.5% or ±0.25pF (Whichever is larger)	R7 ······ Within±7.5% F5 ····· Within±20%	 table. Let sit for 24±2 hours (temperature compensating type) or 48±4 hours (high dielectric constant type) at room temperature, then measure. 			
	Temperature		30pF and over : Q≧1,000		Step 1 2 3 4			
15	Cycle	Q/D.F.	30pF and below : Q≥400+20C C : Nominal Capacitance	Char. 25V min. 16V R7 0.025 max. 0.035 max. F5 0.05 max. 0.07 max.	Temp.(°C) Min. Operating Room Temp. ± o Temp. ± o Temp. Temp. Temp. ± o Temp. Temp.			
			(pF)					
		I.R. Dielectric	More than 10,000M Ω or	500Ω • F (Whichever is smaller)	• Initial measurement for high dielectric constant type Perform a heat treatment at 150 ± 0 °C for one hour and then let sit for 48±4 hours at room temperature. Perform the initial			
		Strength	No failure		let sit for 48±4 hours at room temperature. Perform the initial measurement.			

Continued on the following page.

Continued from the preceding page.

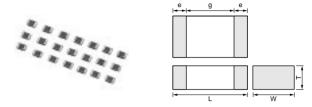
	Continued tr	om the prec	eding page.				
				Specification			
No.	Ite	em	Temperature Compensating Type	High Dielectric Constant Type	Test Method		
			The measured and obserspecifications in the follow	rved characteristics shall satisfy the wing table.			
		Appearance	No marking defects.				
		Capacitance Change	Within ±5% or ±0.5pF (Whichever is larger)	R7 ······· Within±12.5% F5 ······ Within±30%	Sit the capacitor at 40±2℃ and 90 to 95% humidity for 500±12		
16	Humidity, Steady State	Q/D.F.	30pF and over : Q≥350 10pF and over, 30pF and below : Q≥275+ ½-C 10pF and below : Q≥200+10C C : Nominal Capacitance (pF)	Char. 25V min. 16V R7 0.05 max. 0.05 max. F5 0.075 max. 0.1 max.	hours. Remove and let sit for 24±2 hours (temperature compensating type) or 48±4 hours (high dielectric constant type) at room temperature, then measure.		
		I.R.	More than 1,000MΩ or 5	0Ω • F (Whichever is smaller)			
			The measured and obserspecifications in the follow	rved characteristics shall satisfy the wing table.			
		Appearance	No marking defects.				
		Capacitance Change	Within ±7.5% or ±0.75pF (Whichever is larger)	R7 ······ Within±12.5% F5 ····· Within±30%	Apply the rated voltage at 40±2°C and 90 to 95% humidity for		
17	Humidity		30pF and over : Q≧200	21 2511 1 471	500±12 hours. Remove and let sit for 24±2 hours (temperature compensating type) or 48±4 hours (high dielectric constant		
1,	Load	Q/D.F.	30pF and below : Q≥100+ 1,2 C	Char. 25V min. 16V R7 0.05 max. 0.05 max.	type) at room temperature, then measure. The charge/dis-		
			C : Nominal Capacitance (pF)	F5 0.075 max. 0.1 max.	charge current is less than 50mA.		
		I.R.	More than 500MΩ or 250	2 • F (Whichever is smaller)			
		Dielectric Strength	No failure				
			The measured and obserspecifications in the follow	rved characteristics shall satisfy the wing table.			
		Appearance	No marking defects.				
		Capacitance Change	Within ±3% or ±0.3pF (Whichever is larger)	R7 ······· Within±12.5% F5 ······ Within±30%	Apply 200% of the rated voltage for 1,000±12 hours at the maximum operating temperature ±3℃. Let sit for 24±2 hours		
18	High Temperature Load	Q/D.F.	30pF and over : Q≥350 10pF and over, 30pF and below : Q≥275+ ½ C 10pF and below : Q≥200+10C C : Nominal Capacitance (pF)	Char. 25V min. 16V R7 0.04 max. 0.05 max. F5 0.075 max. 0.1 max.	(temperature compensating type) or 48±4 hours (high dielectric constant type) at room temperature, then measure. The charge/discharge current is less than 50mA. •Initial measurement for high dielectric constant type. Apply 200% of the rated DC voltage for one hour at the maximum operating temperature ±3°C. Remove and let sit for 48±4 hours at room temperature. Perform initial measurement.		
		I.R.	More than 1,000MΩ or 5	0Ω • F (Whichever is smaller)			
		Dielectric Strength	No failure				

Table A

	T 0 "		1	Capacitance Cha	nge from 25℃ (%)	
Char. Code	remp. Coeff. (ppm/°C) Note 1	Temp. Coeff55°C		-30℃		−10°C	
	(ppin/c) Note i	Max.	Min.	Max.	Min.	Max.	Min.
5C	0±30	0.58	-0.24	0.40	-0.17	0.25	-0.11

Note 1 : Nominal values denote the temperature coefficient within a range of 25 to 125°C.

for Ultrasonic Sensors


■ Features

- 1. Proper to compensate for ultrasonic sensor.
- 2. Small chip size and high cap. Value.

■ Application

Ultrasonic sensor

(Back sonar, Corner sonar and etc.)

Part Number		Dir	nensions (ı	nm)	
Part Number	L	W	T	е	g min.
GRM219	2.0 ±0.1	1.25 ±0.1	0.85 ±0.1	0.2 to 0.7	0.7

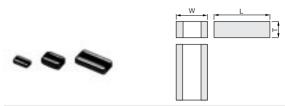
Part Number	TC Code	Rated Voltage (Vdc)	Capacitance (pF)	Length L (mm)	Width W (mm)	Thickness T (mm)
GRM2199E2A102KD01	ZLM	100	1000 ±10%	2.0	1.25	0.85
GRM2199E2A152KD01	ZLM	100	1500 ±10%	2.0	1.25	0.85

No.	Ite	em	Specification		Test Me	thod	
1	Operating Temperat	•	-25°C to +85°C				
2	2 Rated Voltage		See the previous pages.	The rated voltage is defined as the maximum of may be applied continuously to the capacitor. When AC voltage is superimposed on DC voltage whichever is larger, shall be maintained within range.		e capacitor. d on DC voltaç	je, V ^{p.p} or V ^{o.p} ,
3	Appearar	nce	No defects or abnormalities.	Visual inspection.			
4	Dimensio	ns	Within the specified dimensions.	Using calipers.			
5			No defects or abnormalities.	No failure shall be observed when 300% of the rated voltag applied between the terminations for 1 to 5 seconds, provid the charge/discharge current is less than 50mA.			•
6	6 Insulation Resistance (I.R.)		More than 10,000MΩ or 500Ω • F. (Whichever is smaller)	The insulation resistance shall be measured with a DC voltage not exceeding the rated voltage at 20℃ and 75%RH max. and within 2 minutes of charging.			•
7	Capacita	nce	Within the specified tolerance.	The conceitened/D.C. shall be recovered at 2000 with 41.0.41			with 1+0 11/⊔-
8	Dissipatio	n Factor	0.01 max.	The capacitance/D.F. shall be measured at 20°c with 1= in frequency and 1±0.2Vr.m.s. in voltage.			witti i±U.TKHZ
0	(D.F.)		O.O.I IIIQA.	, ,, ,, ,	- ***		
9			emperature Within $-4.700_{-2.500}$ ppm/°C (at -25.001200)		shall be within ient. nange shall be perature stage.	s a reference. quentially from the specified t measured afte	step 1 through olerance for the r 5 min. at
	Character	ISTICS		Step 1		20±2	
				2		-25±3	
				3		20±2	
			4		85±3		
				5		20±2	
10	Adhesive Strength of Termination		No removal of the terminations or other defect shall occur.	Solder the capacito Fig.1 using a eutect direction of the arro The soldering shall reflow method and dering is uniform ar	tic solder. Ther ow. be done either shall be condu	n apply 10N for with an iron octed with care cts such as he such a	r using the so that the sol-
		Annearance	No defects or abnormalities.	Solder the capacito			noard) in the
		Appearance		same manner and u			
11	1 Vibration Resistance	D.F.	Within the specified tolerance. 0.01 max.	The capacitor shall having a total ampli uniformly between t frequency range, from traversed in approx applied for a period directions (total of 6	itude of 1.5mm the approximat om 10 to 55Hz imately 1 minu of 2 hours in e	the frequence te limits of 10 a and return to te. This motion	y being varied and 55Hz. The 10Hz, shall be n shall be

Continued on the following page. $\begin{tabular}{|c|c|c|c|}\hline \end{tabular}$

Continued from the preceding	page
------------------------------	------

No.	Ite	em	Specification	Test Method			
			No cracking or marking defects shall occur.	Solder the capacitor to the test jig (glass epoxy boards) shown in Fig.2 using a eutectic solder. Then apply a force in the direction shown in Fig.3. The soldering shall be done either with an iron or using the reflow method and shall be conducted with care so that the soldering is uniform and free of defects such as heat shock.			
12	2 Deflection	n	### 64.5 ### 64.5 ### 100	20 50 Pressurizing speed : 1.0mm/sec. Pressurize R230 Flexure : ≤1 Capacitance meter			
			GRM21 1.2 4.0 1.65	45 45 (in mm)			
			(in mm) Fig.2	Fig.3			
13	Solderability of Termination 75% of the terminations is to be soldered evenly and continuously.			Immerse the capacitor in a solution of ethanol (JIS-K-8101) and rosin (JIS-K-5902) (25% rosin in weight proportion). Preheat at 80 to 120°C for 10 to 30 seconds. After preheating, immerse in eutectic solder solution for 2±0.5 seconds at 230±5°C.			
		Appearance	No defects or abnormalities.				
	Resistance	Capacitance Change	Within ±7.5%	Preheat the capacitor at 120 to 150°C for 1 minute. Immerse the capacitor in a eutectic solder solution at 270±5°C for 10±0.5			
14	to Soldering Heat	D.F.	0.01 max.	seconds. Let sit at room temperature for 24±2 hours, then			
		I.R.	More than 10,000MΩ or 500Ω • F (Whichever is smaller)	measure.			
		Dielectric Strength	No failure				
		Appearance	No defects or abnormalities.	Fix the capacitor to the supporting jig in the same manner and			
	Tomporatura	Capacitance Change	Within ±7.5%	under the same conditions as (11). Perform the five cycles according to the four heat treatments listed in the following table. Let sit for 24±2 hours at room tem-			
15	Temperature Cycle	D.F.	0.01 max.	perature, then measure.			
		I.R.	More than 10,000MΩ or 500Ω • F (Whichever is smaller)				
		Dielectric Strength	No failure	Time(min.) 30±3 2 to 3 30±3 2 to 3			
		Appearance	No defects or abnormalities.				
	Humidity,	Capacitance Change	Within ±12.5%	Sit the capacitor at 40±2℃ and 90 to 95% humidity for 500±12			
16	Steady	D.F.	0.02 max.	hours. Remove and let sit for 24±2 hours at room temperature, then			
	State	I.R.	More than 1,000MΩ or 50Ω • F (Whichever is smaller)	measure.			
		Dielectric Strength	No failure				
		Appearance	No defects or abnormalities.				
17	Humidity Load	Capacitance Change	Within ±12.5%	Apply the rated voltage at 40±2°C and 90 to 95% humidity for 500±12 hours. Remove and let sit for 24±2 hours at room temperature, then measure. The charge/discharge current is less			
	Loau	D.F.	0.02 max.	than 50mA.			
		I.R.	More than $500M\Omega$ or $25\Omega \bullet F$ (Whichever is smaller)				
		Appearance	No defects or abnormalities.				
18		Capacitance Change	Within ±12.5%	Apply 200% of the rated voltage for 1,000±12 hours at 85±3°C. Let sit for 24±2 hours at room temperature, then measure.			
	Load	D.F.	0.02 max.	The charge/discharge current is less than 50mA.			
		I.R.	More than $1,000M\Omega$ or $50\Omega \bullet F$ (Whichever is smaller)				


Low ESL

■ Features

- 1. Low ESL, good for noise reduction for high frequency.
- 2. Small, high cap.

■ Applications

- High speed micro processor.
- High frequency digital equipment

Part Number	Dimensions (mm)			
Fait Number	L	W	T	
LLL185	1.6 ±0.1	0.8 ±0.1	0.6 max.	
LLL216	2.0 +0.1	1.25 ±0.1	0.6 ±0.1	
LLL219	2.0 ±0.1		0.85 ±0.1	
LLL317	3.2 ±0.15	1.6 ±0.15	0.7 ±0.1	
LLL31M	3.∠ ±0.15	1.0 ±0.15	1.15 ±0.1	

LLL18 Series (1.6x0.8mm)

Part Number	LLL18				
LxW	1.6x0.8				
тс		X7R (R7)			
Rated Volt.	10 (1A)	16 (1C)	25 (1E)	50 (1H)	
Capacitance (Ca	pacitance part numbering code)	and T(mm) Dimension (T Dimens	sion part numbering code)		
2200pF(222)				0.5 (5)	
3300pF(332)				0.5 (5)	
4700pF(472)				0.5 (5)	
6800pF(682)			0.5 (5)		
10000pF(103)			0.5 (5)		
15000pF(153)			0.5 (5)		
22000pF(223)			0.5 (5)		
33000pF(333)		0.5(5)			
47000pF(473)		0.5(5)			
68000pF(683)		0.5(5)			
0.1μF(104)	0.5(5)				

The part numbering code is shown in ().

Dimensions are shown in mm and Rated Voltage in Vdc.

LLL21 Series (2.0x1.25mm)

Part Number	LLL21					
L x W		2.0x1.25				
тс		X7R (R7)				
Rated Volt.	10 (1A)	16 (1C)	25 (1E)	50 (1H)		
Capacitance (Ca	pacitance part numbering code)	and T(mm) Dimension (T Dimens	sion part numbering code)			
0.22pF(224)	0.6(6)					
4700pF(472)				0.6(6)		
6800pF(682)				0.6(6)		
10000pF(103)				0.6(6)		
15000pF(153)				0.6(6)		
22000pF(223)				0.6(6)		
33000pF(333)		0.6(6)	0.6(6)	0.85 (9)		

Continued from the preceding page.

Part Number	LLL21			
LxW		2.0x	1.25	
тс	X7R (R7)			
Rated Volt.	10 (1A)	16 (1C)	25 (1E)	50 (1H)
Capacitance (Capa	acitance part numbering code)	and T(mm) Dimension (T Dimens	sion part numbering code)	
47000pF(473)		0.6(6)	0.6(6)	
68000pF(683)		0.6(6)	0.6(6)	
0.1μF(104)		0.6(6)	0.6(6)	
0.15μF(154)		0.6(6)	0.85(9)	
0.22μF(224)		0.85 (9)		
0.33μF(334)	0.6(6)			
0.47μF(474)	0.85(9)			

The part numbering code is shown in ().

Dimensions are shown in mm and Rated Voltage in Vdc.

LLL31 Series (3.2x1.6mm)

Part Number	LLL31				
LxW	3.2x1.6				
тс		X7R (R7)			
Rated Volt.	10 (1A)	16 (1C)	25 (1E)	50 (1H)	
Capacitance (Ca	pacitance part numbering code)	and T(mm) Dimension (T Dimen	sion part numbering code)		
10000pF(103)				0.7(7)	
15000pF(153)				0.7(7)	
22000pF(223)				0.7 (7)	
33000pF(333)				0.7 (7)	
47000pF(473)				0.7 (7)	
68000pF(683)				0.7 (7)	
0.1μF(104)		0.7(7)	0.7(7)	1.15(M)	
0.15μF(154)		0.7(7)	0.7(7)		
0.22μF(224)		0.7(7)	1.15(M)		
0.33μF(334)		0.7(7)	1.15(M)		
0.47μF(474)		0.7(7)	1.15(M)		
0.68μF(684)	0.7(7)	1.15(M)			
1.0μF(105)	0.7(7)	1.15(M)			
1.5μF(155)	1.15(M)				
2.2μF(225)	1.15(M)				

The part numbering code is shown in $\ (\).$

Dimensions are shown in mm and Rated Voltage in Vdc.

No.	Item		Specification	Test Method		
1	Operating Temperature Range		−55°C to +125°C			
2	2 Rated Voltage See the previous pages.		See the previous pages.	The rated voltage is defined as the maximum voltage which may be applied continuously to the capacitor. When AC voltage is superimposed on DC voltage, V ^{p,p} or V ^{o,p} , whichever is larger, shall be maintained within the rated voltage range.		
3	Appearance		No defects or abnormalities.	Visual inspection.		
4	Dimensions		Within the specified dimension.	Using calipers.		
5	Dielectric Str	ength	No defects or abnormalities.	No failure shall be observed when 250% of the rated voltage is applied between the terminations for 1 to 5 seconds, provided the charge/discharge current is less than 50mA.		
6	Insulation Resi (I.R.)	istance	More than 10,000M Ω or 500 Ω • F (Whichever is smaller)	The insulation resistance shall be measured with a DC voltage not exceeding the rated voltage at 25℃ and 75%RH max. and within 2 minutes of charging.		
7	Capacitance		Within the specified tolerance.	The capacitance/D.F. shall be measured at 25℃ at the		
8	Dissipation Fa	actor	Char. 25V min. 16V R7 0.025 max. 0.035 max.	frequency and voltage shown in the table. R7 Frequency 1±0.1kHz Voltage 1±0.2Vr.m.s.		
9	Capacitance Temperature Characteristics Char. Temp. Range (°C) Reference Temp. Cap. Change. R7 -55 to +125 25°C Within±15%			The ranges of capacitance change compared with the 25°C value over the temperature ranges shown in the table shall be within the specified ranges. The capacitance change shall be measured after 5 min. at each specified temperature stage.		
10	Adhesive Strength of Termination		No removal of the terminations or other defect shall occur.	Solder the capacitor to the test jig (glass epoxy board) shown in Fig.1 using a eutectic solder. Then apply 10N° force in the direction of the arrow. *5N:LLL18 The soldering shall be done either with an iron or using the reflow method and shall be conducted with care so that the soldering is uniform and free of defects such as heat shock. Solder resist Baked electrode or copper foil Type a b c LLL18 0.3 1.2 2.0 LLL21 0.6 1.6 2.4 LLL31 1.0 3.0 3.7 (in mm)		
	Ann	noaranco	No defects or abnormalities.	Fig.1 Solder the capacitor to the test jig (glass epoxy board) in the		
		pearance		same manner and under the same conditions as (10).		
11	Vibration Resistance	F.	Char. 25V min. 16V R7 0.025 max. 0.035 max.	The capacitor shall be subjected to a simple harmonic motion having a total amplitude of 1.5mm, the frequency being varied uniformly between the approximate limits of 10 and 55Hz. The frequency range, from 10 to 55Hz and return to 10Hz, shall be traversed in approximately 1 minute. This motion shall be applied for a period of 2 hours in each 3 mutually perpendicular directions (total of 6 hours).		

Continued on the following page.

Continued from the preceding page.

\overline{A}	Continued from the preceding page.							
No.	Ite	m	Specification	Test Method				
12	12 Deflection		No crack or marked defect shall occur.	Solder the capacitor to the test jig (glass epoxy boards) show in Fig.2 using a eutectic solder. Then apply a force in the direction shown in Fig.3. The soldering shall be done either with an iron or using the reflow method and shall be conducted with care so that the soldering is uniform and free of defects such as heat shock. 20 50 Pressurizing speed: 1.0mm/sec. Pressurize R230 Flexure: ≤1 (in mm) Fig.3				
13	Solderabi Terminati	-	75% of the terminations is to be soldered evenly and continuously.	Immerse the capacitor in a solution of ethanol (JIS-K-8101) and rosin (JIS-K-5902) (25% rosin in weight proportion). Preheat at 80 to 120°C for 10 to 30 seconds. After preheating, immerse in eutectic solder solution for 2±0.5 seconds at 230±5°C.				
		Appearance	No defects or abnormalities.	Preheat the capacitor at 120 to 150℃ for 1 minute. Immerse the				
		Capacitance Change	Within±7.5%	capacitor in a eutectic solder solution at 270±5°C for 10±0.5 seconds. Let sit at room temperature for 48±4 hours , then				
14	Resistance to Soldering Heat	D.F.	Char. 25V min. 16V R7 0.025 max. 0.035 max.	Initial measurement.				
		I.R.	More than 10,000MΩ or 500Ω • F (Whichever is smaller)	Perform a heat treatment at 150 ⁺⁰ ₁₀ ℃ for one hour and then let sit for 48±4 hours at room temperature. Perform the initial				
		Dielectric Strength	No failure	measurement.				
		Appearance	No defects or abnormalities.	Fix the capacitor to the supporting jig in the same manner and				
		Capacitance Change	Within±7.5%	under the same conditions as (10). Perform the five cycles according to the four heat treatments listed in the following table. Let sit for 48±4 hours at room tem-				
		D.F.	Char. 25V min. 16V R7 0.025 max. 0.035 max.	perature, then measure. Step 1 2 3 4				
15	Temperature	I.R.	More than $10.000M\Omega$ or $500\Omega \cdot F$ (Whichever is smaller)	Temp (°C) Min. Operating Room Max. Operating Room				
	Cycle		(Time(min.) 30±3 2 to 3 30±3 2 to 3				
		Dielectric Strength	No failure	•Initial measurement. Perform a heat treatment at 150 ± 20 ℃ for one hour and then let sit for 48±4 hours at room temperature. Perform the initial measurement.				
		Appearance	No defects or abnormalities.					
	Humidity,	Capacitance Change	Within±12.5%	Sit the capacitor at 40±2°C and 90 to 95% humidity for 500±12 hours.				
16	Steady State	D.F.	Char. 25V min. 16V R7 0.05 max. 0.05 max.	Remove and let sit for 48 \pm 4 hours at room temperature, then measure.				
		I.R.	More than 1,000M Ω or 50 Ω • F (Whichever is smaller)					
		Appearance	No defects or abnormalities.					
		Capacitance Change	Within±12.5%	- Apply the rated voltage at 40±2℃ and 90 to 95% humidity for				
17	Humidity Load	D.F.	Char. 25V min. 16V R7 0.05 max. 0.05 max.	500±12 hours. Remove and let sit for 48±4 hours at room temperature, then measure. The charge/discharge current is less				
		I.R.	More than 500MΩ or 25Ω • F (Whichever is smaller)	than 50mA.				
		Dielectric Strength	No failure					

Continued on the following page.

Continued from the preceding page.

No.	Ite	em Specification		Test Method
		Appearance	No defects or abnormalities.	Apply 200% of the rated voltage for 1,000±12 hours at maxi-
18	High Temperature Load	Capacitance Change	Within±12.5%	mum operating temperature ±3°C. Let sit for 48±4 hours at room temperature, then measure.
		D.F.	Char. 25V min. 16V R7 0.05 max. 0.05 max.	The charge/discharge current is less than 50mA. •Initial measurement.
		I.R.	More than 1,000MΩ or 50Ω • F (Whichever is smaller)	Apply 200% of the rated DC voltage for one hour at the maximum operating temperature ±3°C.
		Dielectric Strength	No failure	Remove and let sit for 48±4 hours at room temperature. Perform initial measurement.

High Frequency for Flow/Reflow Soldering

■ Features

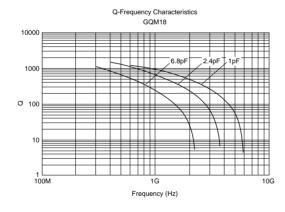
- 1. HiQ and low ESR at VHF, UHF, Microwave.
- 2. Feature improvement, low power consumption for mobile telecommunication. (Base station, terminal,

■ Applications

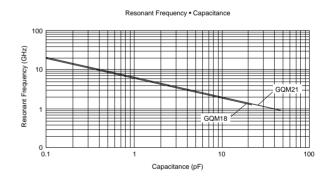
High-frequency circuit (Mobile telecommunication, etc.)

Part Number	Dimensions (mm)					
Part Number	L	W	T	е	g min.	
GQM188	1.6 ±0.1	0.8 ±0.1	0.8 ±0.1	0.2 to 0.5	0.5	
GQM219	2.0 ±0.1	1.25 ±0.1	0.85 ±0.1	0.2 to 0.7	0.7	

Part Number	GQM18 1.60x0.80		GQM21 2.00x1.25		
LxW					
тс	C0 (5		C0G (5C)		
Rated Volt.	50 (1H)	100 (2A)	50 (1H)	100 (2A)	
Capacitance (Cap	pacitance part numbering code)	and T(mm) Dimension (T Dimens	sion part numbering code)		
0.5pF(R50)		0.80(8)		0.85 (9)	
0.75pF(R75)		0.80(8)		0.85 (9)	
1.0pF(1R0)		0.80(8)		0.85 (9)	
1.1pF(1R1)		0.80(8)		0.85(9)	
1.2pF(1R2)		0.80(8)		0.85(9)	
1.3pF(1R3)		0.80(8)		0.85(9)	
1.5pF(1R5)		0.80(8)		0.85(9)	
1.6pF(1R6)		0.80(8)		0.85(9)	
1.8pF(1R8)		0.80(8)		0.85(9)	
2.0pF(2R0)		0.80(8)		0.85(9)	
2.2pF(2R2)		0.80(8)		0.85(9)	
2.4pF(2R4)		0.80(8)		0.85(9)	
2.7pF(2R7)		0.80(8)		0.85(9)	
3.0pF(3R0)		0.80(8)		0.85(9)	
3.3pF(3R3)		0.80(8)		0.85(9)	
3.6pF(3R6)		0.80(8)		0.85(9)	
3.9pF(3R9)		0.80(8)		0.85(9)	
4.0pF(4R0)		0.80(8)		0.85(9)	
4.3pF(4R3)		0.80(8)		0.85(9)	
4.7pF(4R7)		0.80(8)		0.85(9)	
5.0pF(5R0)		0.80(8)		0.85 (9)	
5.1pF(5R1)		0.80(8)		0.85(9)	
5.6pF(5R6)		0.80(8)		0.85(9)	
6.0pF(6R0)		0.80(8)		0.85(9)	
6.2pF(6R2)		0.80(8)		0.85(9)	
6.8pF(6R8)		0.80(8)		0.85(9)	
7.0pF(7R0)	0.80(8)			0.85(9)	
7.5pF(7R5)	0.80(8)			0.85(9)	
8.0pF(8R0)	0.80(8)			0.85(9)	
8.2pF(8R2)	0.80(8)			0.85(9)	
9.0pF(9R0)	0.80(8)			0.85(9)	
9.1pF(9R1)	0.80(8)			0.85(9)	
10.0pF(100)	0.80(8)			0.85(9)	


Continued from the preceding page.

Part Number	GQN	M18	GC	QM21	
LxW	1.60x	0.80	2.00x1.25		
тс	COG (5C) COG (5C)		:0G 5C)		
Rated Volt.	50 (1H)	100 (2A)	50 (1H)	100 (2A)	
Capacitance (Cap	pacitance part numbering code)	and T(mm) Dimension (T Dimens	sion part numbering code)		
11pF(110)	0.80(8)			0.85(9)	
12pF(120)	0.80(8)			0.85 (9)	
13pF(130)	0.80(8)			0.85 (9)	
15pF(150)	0.80(8)			0.85 (9)	
16pF(160)	0.80(8)			0.85 (9)	
18pF(180)	0.80(8)			0.85 (9)	
20pF(200)	0.80(8)		0.85 (9)		
22pF(220)	0.80(8)		0.85 (9)		
24pF(240)	0.80(8)		0.85 (9)		
27pF(270)			0.85 (9)		
30pF(300)			0.85 (9)		
33pF(330)			0.85 (9)		
36pF(360)			0.85 (9)		
39pF(390)			0.85 (9)		
43pF(430)			0.85 (9)		
47pF(470)			0.85 (9)		


The part numbering code is shown in ().

Dimensions are shown in mm and Rated Voltage in Vdc.

■ Q-Frequency Characteristics

■ Resonant Frequency-Capacitance

No.	Ite	em	Specification		Test Method
1	Operating Temperati		C0G : −55°C to 125°C		
2			See the previous pages.	The rated voltage is defined as the maximum voltage which may be applied continuously to the capacitor. When AC voltage is superimposed on DC voltage, V ^{p,p} or V whichever is larger, shall be maintained within the rated vo range.	
3	Appearar	nce	No defects or abnormalities.	Visual inspection.	
4	Dimensio	ns	Within the specified dimensions.	Using calipers.	
5	Dielectric	Strength	No defects or abnormalities.	applied between the to	served when 300% of the rated voltage is erminations for 1 to 5 seconds, provided current is less than 50mA.
6	Insulation (I.R.)	Resistance	More than 10,000M Ω or 500 Ω • F. (Whichever is smaller)		nce shall be measured with a DC voltage ed voltage at 25°C and 75%RH max. and arging.
7	Capacita	nce	Within the specified tolerance.	•	all be measured at 25°C at the frequency
8	Q		Q≥1000	and voltage shown in Item Char Frequency Voltage	
		Capacitance Change	Within the specified tolerance. (Table A-1)	The temperature coefficient is determined using the capaci tance measured in step 3 as a reference.	
		Temperature Coefficent	Within the specified tolerance. (Table A-1)	5, the capacitance sha	perature sequentially from step 1 through all be within the specified tolerance for the and capacitance change as Table A.
9	Capacitance Temperature Characteristics			The capacitance drift	is caluculated by dividing the differences n and minimum measured values in the
				2	-55±3
				3	25±2
				4	125±3
				5	25±2
10	Adhesive Strength of Termination		No removal of the terminations or other defect shall occur.	Fig.1 using a eutectic swith the test jig for 10± The soldering shall be method and shall be couniform and free of def	done either with an iron or using the reflow onducted with care so that the soldering is rects such as heat shock. *5N (GQM18) *5N (GQM18) Solder resist Baked electrode or copper foil a b c 1.0 3.0 1.2 1.2 4.0 1.65 (in mm)
		Annearance	No defects or abnormalities.	Solder the capacitor to	Fig.1 o the test jig (glass epoxy board) in the
		Appearance		•	
11	Vibration Resistance	Capacitance	Within the specified tolerance. Q≥1000	same manner and under the same conditions as (10). The capacitor shall be subjected to a simple harmonic m having a total amplitude of 1.5mm, the frequency being wuniformly between the approximate limits of 10 and 55Hz frequency range, from 10 to 55Hz and return to 10Hz, sh traversed in approximately 1 minute. This motion shall be applied for a period of 2 hours in each 3 mutually perpendirections (total of 6 hours).	

Continued on the following page. $\boxed{\ \ \ }$

<u> </u>	Continued fr	om the prec	eding page.							
No.	Ite	em	Specification			Tes	st Metho	d		
			No cracking or marking defects shall occur.	Fi sh or	Solder the capacitor to the test jig (glass epoxy board) shor Fig.2 using a eutectic solder. Then apply a force in the dire shown in Fig.3. The soldering shall be done either with an or using the reflow method and shall be conducted with call that the soldering is uniform and free of defects such as he shock.					
12	Deflection		Type a b c GQM18 1.0 3.0 1.2 GQM21 1.2 4.0 1.65 (in mr		20 50 Pressurizing speed: 1.0mm/sec. Pressurize R230 Flexure: ≤1 Capacitance meter 45 (in mm)					
				Im	merse the o	Fig.:		ethanol (JIS-K	(-8101) and	
13	Solderabi Terminati		75% of the terminations is to be soldered evenly and continuou	sly. ro	sin (JIS-K-5) to 120℃ fo	902) (25% rosi r 10 to 30 seco	n in weig onds. Afte	ht proportion). r preheating, ir onds at 230±5°	Preheat at nmerse in	
			The measured and observed characteristics shall satisfy the specifications in the following table.							
		Appearance	No marking defects.							
14	Resistance Capacitance 4 to Soldering Change		Within ±2.5% or ±0.25pF (Whichever is larger)			•		for 1 minute. Ir at 270±5℃ for		
	Heat	Q	Q≥1000		•			for 24±2 hours		
		I.R.	More than 10,000M Ω or 500 Ω • F (Whichever is smaller)							
		Dielectric Strength	No failure							
			The measured and observed characteristics shall satisfy the specifications in the following table.	Fi	-	tor to the supp		in the same ma	anner and	
		Appearance	No marking defects.	P6	Perform the five cycles according to the four heat treatments listed in the following table. Let sit for 24±2 hours at room temperature, then measure.					
16	Temperature	Capacitance Change	Within ±2.5% or ±0.25pF (Whichever is larger)							
15	Cycle	Q	Q≧1000		Step	1	2	3	4	
		I.R.	More than 10,000MΩ or 500Ω • F (Whichever is smaller)		Temp.(℃)	Min. Operating Temp.+0/-3	Room Temp.	Max. Operating Temp.+3/-0	Room Temp.	
		Dielectric Strength	No failure		Time(min.)	30±3	2 to 3	30±3	2 to 3	
		.	The measured and observed characteristics shall satisfy the specifications in the following table.							
		Appearance	No marking defects.							
	Humidity,	Capacitance	Within ±5% or ±0.5pF			or at 40±2℃ a	nd 90 to	95% humidity f	or 500±12	
16	Steady State	Change	(Whichever is larger)		ours. emove and l	et sit for 24±2	hours (te	mperature com	pensating	
	State	Q	Q≥350	ty	pe) at room	temperature, tl	nen meas	sure.		
		I.R. Dielectric	More than 1,000MΩ or 50Ω • F (Whichever is smaller)							
		Strength	No failure							
			The measured and observed characteristics shall satisfy the specifications in the following table.							
		Appearance	No marking defects.		مصابر خام م	d volta == - 1 10	⊥_0∞ - :	1 00 to 050/ !	midit - fr -	
17	Humidity	Capacitance Change	Within ±7.5% or ±0.75pF (Whichever is larger)	50	00±12 hours	. Remove and	let sit for	d 90 to 95% huld 24±2 hours at	room tem-	
	Load	Q	Q≥200		erature, then an 50mA.	measule. The	citatye/0	discharge curre	111. IS IESS	
		I.R.	More than 500MΩ or 25Ω • F (Whichever is smaller)							
		Dielectric								

Continued on the following page. $\begin{tabular}{|c|c|c|c|} \hline \end{tabular}$

Continued from the preceding page.

No.	Ite	em	Specification	Test Method
			The measured and observed characteristics shall satisfy the specifications in the following table.	
		Appearance	No marking defects.	Apply 200% of the rated voltage for 1,000±12 hours at the
18	High Temperature	Capacitance Change	Within ±3% or ±0.3pF (Whichever is larger)	maximum operating temperature ±3°C. Let sit for 24±2 hours (temperature compensating type) at
	Load	Q	Q≧350	room temperature, then measure.
		I.R.	More than 1,000M Ω or 50 Ω • F (Whichever is smaller)	The charge/discharge current is less than 50mA.
		Dielectric Strength	No failure	

Table A

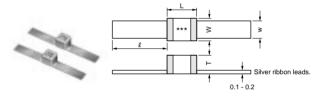
		Capacitance Change from 25°C (%)							
Char. Code	Nominal Values (ppm/℃) Note 1	− 55℃		-3	0℃	−10°C			
	(ppin/c) Note i	Max.	Min.	Max.	Min.	Max.	Min.		
COG	0±30	0.58	-0.24	0.40	-0.17	0.25	-0.11		

Note 1 : Nominal values denote the temperature coefficient within a range of 25℃ to 125℃. (for C0G)

High-Q & High Power Type

■ Features (ERF Series)

- The dielectric is composed of low dielectric loss ceramic. This series is perfectly suited to high-frequency applications. (VHS-microwave band)
- The series is ultraminiature, yet has a high-power capacity. This is the best capacitor available for transmitter and amplifier circuits such as those in broadcasting equipment and mobile base stations.
- ERF1D type is designed for both flow and reflow soldering and ERF22 type is designed for reflow soldering.



■ Applications

High-frequency and high-power circuits.

■ Features (ERH Series)

- The dielectric is composed of low dielectric loss ceramics. This series is perfectly suited to highfrequency applications (VHS-microwave band).
- The series is ultraminiature, yet has a high-power capacity. This is the best capacitor available for transmitter and amplifier circuits such as those in broadcasting equipment and mobile base stations.
- ERH1X/3X Series capacitors withstand high temperatures because ribbon leads are attached with silver paste.
- ERH1X/3X Series capacitors are easily soldered and especially well suited in applications where only a soldering iron can be used.

*** : Capacitance Code

Part Number	Dimensions (mm)								
Part Number	L	W	T max.	l	w				
ERH1XC	1.6 ±0.4	1.4 ±0.4	1.6	5.0 min.	1.3 ±0.4				
ERH3XX	3.2 ±0.4	2.8 ±0.4	3.0	9.0 ±2.0	2.35 ±0.15				

■ Applications

High-frequency and high-power circuits.

Part Number	ERF1D			ERF22			ERH1X			ERH3X		
LxW	1.40x1.40			2.80x2.80			1.60x1.40			3.20x2.80		
тс	C0G (5C)			C0G (5C)			C0G (5C)			C0G (5C)		
Rated Volt.	50 (1H)	50 (1H)	100 (2A)	200 (2D)	300 (YD)	500 (2H)	50 (1H)	50 (1H)	100 (2A)	200 (2D)	300 (YD)	500 (2H)
Capacitance (Ca	pacitance p	oart numbe	ering code)	and T(mm)) Dimensio	n (T Dimens	sion part nu	mbering co	ode)	ı		
0.5pF(R50)	1.15(M)					2.30(X)	1.60(C)					3.00(X)
0.6pF(R60)	1.15(M)					2.30(X)	1.60(C)					3.00(X)
0.7pF(R70)	1.15(M)					2.30(X)	1.60(C)					3.00(X)
0.8pF(R80)	1.15(M)					2.30(X)	1.60(C)					3.00(X)
0.9pF(R90)	1.15(M)					2.30(X)	1.60(C)					3.00(X)
1.0pF(1R0)	1.15(M)					2.30(X)	1.60(C)					3.00(X)
1.1pF(1R1)	1.15(M)					2.30(X)	1.60(C)					3.00(X)
1.2pF(1R2)	1.15(M)					2.30(X)	1.60(C)					3.00(X)
1.3pF(1R3)	1.15(M)					2.30(X)	1.60(C)					3.00(X)
1.4pF(1R4)	1.15(M)					2.30(X)	1.60(C)					3.00(X)
1.5pF(1R5)	1.15(M)					2.30(X)	1.60(C)					3.00(X)

Continued from the preceding page.

Part Number L x W	1.40x1.40			ERF22 2.80x2.80)		ERH1X 1.60x1.40			3.20x2.80		
TC	C0G (5C)			C0G (5C)	<u>'</u>		C0G (5C)			C0G (5C)		
Rated Volt.	50 (1H)	50 (1H)	100 (2A)	200 (2D)	300 (YD)	500 (2H)	50 (1H)	50 (1H)	100 (2A)	200 (2D)	300 (YD)	500 (2H)
Capacitance (Ca	apacitance	part numb	ering code)	and T(mm) Dimensior	ו ר (T Dimen:	sion part nu	mbering c	ode)			
1.6pF(1R6)	1.15(M)					2.30(X)	1.60(C)					3.00(X
1.7pF(1R7)	1.15(M)					2.30(X)	1.60(C)					3.00(X
1.8pF(1R8)	1.15(M)					2.30(X)	1.60(C)					3.00(X
1.9pF(1R9)	1.15(M)					2.30(X)	1.60(C)					3.00()
2.0pF(2R0)	1.15(M)					2.30(X)	1.60(C)					3.00()
2.1pF(2R1)	1.15(M)					2.30(X)	1.60(C)					3.00()
2.2pF(2R2)	1.15(M)					2.30(X)	1.60(C)					3.00(X
2.4pF(2R4)	1.15(M)					2.30(X)	1.60(C)					3.00(X
2.7pF(2R7)	1.15(M)					2.30(X)	1.60(C)					3.00(X
3.0pF(3R0)	1.15(M)					2.30(X)	1.60(C)					3.00(X
3.3pF(3R3)	1.15(M)					2.30(X)	1.60(C)					3.00(X
3.6pF(3R6)	1.15(M)					2.30(X)	1.60(C)					3.00(X
3.9pF(3R9)	1.15(M)					2.30(X)	1.60(C)					3.00(X
4.3pF(4R3)	1.15(M)					2.30(X)	1.60(C)					3.00(X
4.7pF(4R7)	1.15(M)					2.30(X)	1.60(C)					3.00(X
5.1pF(5R1)	1.15(M)					2.30(X)	1.60(C)					3.00(X
5.6pF(5R6)	1.15(M)					2.30(X)	1.60(C)					3.00(X
6.2pF(6R2)	1.15(M)					2.30(X)	1.60(C)					3.00(X
6.8pF(6R8)	1.15(M)					2.30(X)	1.60(C)					3.00(X
7.5pF(7R5)	1.15(M)					2.30(X)	1.60(C)					3.00(X
8.2pF(8R2)	1.15(M)					2.30(X)	1.60(C)					3.00(X)
9.1pF(9R1)	1.15(M)					2.30(X)	1.60(C)					3.00(X)
10.0pF(100)	1.15(M)					2.30(X)	1.60(C)					3.00(X)
11pF(110)	1.15(M)					2.30(X)	1.60(C)					3.00(X)
12pF(120)	1.15(M)					2.30(X)	1.60(C)					3.00(X)
13pF(130)	1.15(M)					2.30(X)	1.60(C)					3.00(X)
15pF(150)	1.15(M)					2.30(X)	1.60(C)					3.00(X)
16pF(160)	+					2.30(X)	1.60(C)					3.00(X)
18pF(180)	1.15(M)					2.30(X)	1.60(C)					3.00(X)
20pF(200)	1.15(M)					2.30(X)	1.60(C)					3.00(X)
22pF(220)	1.15(M)					2.30(X)	1.60(C)					3.00(X)
24pF(240)	1.15(M)					2.30(X)	1.60(C)					3.00(X)
27pF(270)	1.15(M)					2.30(X)	1.60(C)					3.00(X
30pF(300)	1.15(M)					2.30(X)	1.60(C)					3.00(X)
33pF(330)	1.15(M)					2.30(X)	1.60(C)					3.00(X)
36pF(360)	1.15(M)					2.30(X)	1.60(C)					3.00(X)
39pF(390)	1.15(M)					2.30(X)	1.60(C)					3.00(X)
43pF(430)	1.15(M)					2.30(X)	1.60(C)					3.00(X)
47pF(470)	1.15(M)					2.30(X)	1.60(C)					3.00(X)
51pF(510)	1.15(M)					2.30(X)	1.60(C)					3.00(X)
56pF(560)	1.15(M)					2.30(X)	1.60(C)					3.00(X)
62pF(620)	1.15(M)					2.30(X)	1.60(C)					3.00(X)
68pF(680)	1.15(M)					2.30(X)	1.60(C)					3.00(X)
75pF(750)	1.15(M)					2.30(X)	1.60(C)					3.00(X
82pF(820)	1.15(M)					2.30(X)	1.60(C)					3.00(X
91pF(910)	1.15(M)					2.30(X)	1.60(C)					3.00(X
100pF(101)	1.15(M)				2 20/ V \	2.30(X)	1.60(C)				3 00(v)	3.00(X
110pF(111)					2.30(X)						3.00(X)	
120pF(121)					2.30(X)						3.00(X)	
130pF(131)					2.30(X)						3.00(X)	
150pF(151) 160pF(161)					2.30(X) 2.30(X)						3.00(X) 3.00(X)	

Continued from the preceding page.

Part Number	ERF1D			ERF22			ERH1X			ERH3X		
LxW	1.40x1.40			2.80x2.80			1.60x1.40			3.20x2.80		
тс	C0G (5C)			C0G (5C)			C0G (5C)			C0G (5C)		
Rated Volt.	50 (1H)	50 (1H)	100 (2A)	200 (2D)	300 (YD)	500 (2H)	50 (1H)	50 (1H)	100 (2A)	200 (2D)	300 (YD)	500 (2H)
Capacitance (Ca	apacitance	part numbe	ering code)	and T(mm)	Dimension	(T Dimen	sion part nu	mbering c	ode)		'	
180pF(181)					2.30(X)						3.00(X)	
200pF(201)					2.30(X)						3.00(X)	
220pF(221)				2.30(X)						3.00(X)		
240pF(241)				2.30(X)						3.00(X)		
270pF(271)				2.30(X)						3.00(X)		
300pF(301)				2.30(X)						3.00(X)		
330pF(331)				2.30(X)						3.00(X)		
360pF(361)				2.30(X)						3.00(X)		
390pF(391)				2.30(X)						3.00(X)		
430pF(431)				2.30(X)						3.00(X)		
470pF(471)				2.30(X)						3.00(X)		
510pF(511)			2.30(X)						3.00(X)			
560pF(561)			2.30(X)						3.00(X)			
620pF(621)			2.30(X)						3.00(X)			
680pF(681)			2.30(X)						3.00(X)			
750pF(751)		2.30(X)						3.00(X)				
820pF(821)		2.30(X)						3.00(X)				
910pF(911)		2.30(X)						3.00(X)				
1000pF(102)		2.30(X)						3.00(X)				

The part numbering code is shown in ().

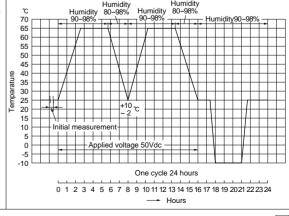
Dimensions are shown in mm and Rated Voltage in Vdc.

No.	Ite	em	Specification		Test Method				
1	Operating Temperatu	ıre Range	−55°C to +125°C						
2	Rated Vo	ltage	See the previous pages.	The rated voltage is defined as the maximum voltage which may be applied continuously to the capacitor. When AC voltage is superimposed on DC voltage, V ^{p.p} or V ^{o.p} , whichever is larger, shall be maintained within the rated voltage range.					
3	Appearar	nce	No defects or abnormalities.	Visual inspection.					
4	Dimensio	ns	Within the specified dimension.	Using calipers.					
5	Dielectric	Strength	No defects or abnormalities.	applied between the te	erved when 250% of the rated voltage is erminations for 1 to 5 seconds, provided current is less than 50mA.				
6	Insulation Resistance (I.R.) 25°C		C≦ 470pF:1,000,000MΩ min. 470pF <c≦1,000pf: 100,000mω="" min.<br="">C≦ 470pF: 100,000MΩ min.</c≦1,000pf:>	not exceeding the rate	ce shall be measured with a DC voltage d voltage at 25℃ and 125℃ standard				
	(I.R.)	470pF <c≦1,000pf 10,000mω="" :="" min.<="" td=""><td>humidity and within 2 n</td><td></td></c≦1,000pf>		humidity and within 2 n					
7	Capacita	nce	Within the specified tolerance. C≦ 220pF : Q≥10,000	The capacitance/Q sha and voltage shown in t	all be measured at 25°C at the frequency he table.				
8	Q		220pF <c≤ 470pf="" 5,000<="" :="" q≥="" td=""><td>Item</td><td></td></c≤>	Item					
0	Q		470pF <c≦1,000pf 3,000<="" :="" q≥="" td=""><td>Frequency Voltage</td><td>1±0.1MHz 0.5 to 5Vr.m.s.</td></c≦1,000pf>	Frequency Voltage	1±0.1MHz 0.5 to 5Vr.m.s.				
		Capacitance Variation Rate	C : Nominal Capacitance (pF) Within the specified tolerance. (Table A-7)	The temperature coefficient is determined using the capacitance measured in step 3 as a reference. When cycling the temperature sequentially from step 1 through 5, the capaci-					
	Capacitance Temperature Characteristics	Temperature Coefficient	Within the specified tolerance. (Table A-7)	coefficient and capacit	ne specified tolerance for the temperature ance change as Table A. Is calculated by dividing the differences				
9		Capacitance Drift	Within $\pm 0.2\%$ or ± 0.05 pF (Whichever is larger)	between the maximum step 1, 3 and 5 by the	and minimum measured values in the cap. value in step 3. ge shall be measured after 5 min. at				
10	Terminal	Adhesive Strength of Termination (for chip type)	No removal of the terminations or other defects shall occur.	Fig.1 using solder cont done either with an iror care so the soldering is shock. Then apply a 10	the test jig (alumina substrate) shown in aining 2.5% silver. The soldering shall be nor in furnace and be conducted with a uniform and free of defects such as heat DN* force in the direction of the arrow. *ERF1D: 5N Alumina substrate				
10	Strength	Tensile Strength (for micro- strip type)	Capacitor shall not be broken or damaged.		fixed and a load is applied gradually in its value reaches 10N (5N for ERH1X).				
		Bending Strength of lead wire terminal (for micro- strip type)	Lead wire shall not be cut or broken.	Position the main body of the capacitor so the lead wire terminal is perpendicular, and load 2.5N to the lead wire terminal. Bend the main body by 90 degrees, bend back to original position, bend 90 degrees in the reverse direction, and then bend back to original position.					

Continued on the following page.

Continued from the preceding page.

Humidity


No.	Ite	em		Specification	Test Method		
		Appearance	No defects or abnormalities	es.	Solder the capacitor to the test jig (alumina substrate) shown in		
		Capacitance	Within the specified tolera	ince.	Fig.2 using solder containing 2.5% silver. The soldering shall be		
11	Vibration Resistance $Q = \begin{array}{c} \text{Satisfies the initial value.} \\ C \leq 220 \text{pF} : Q \geq 10,000 \\ 220 \text{pF} < C \leq 470 \text{pF} : Q \geq 5,000 \\ 470 \text{pF} < C \leq 1,000 \text{pF} : Q \geq 3,000 \\ C : \text{Nominal Capacitance (pF)} \\ \end{array}$		5,000 3,000	done either with an iron or using the reflow method and shall be conducted with care so the soldering is uniform and free of defects such as heat shock. The capacitor shall be subjected to a simple harmonic motion having a total amplitude of 1.5mm, the frequency being varied uniformly between the approximate limits of 10 and 55Hz. The frequency range, from 10 to 55Hz and return to 10Hz, shall be traversed in approximately 1 minute. This motion shall be applied for a period of 2 hours in each 3 mutually perpendicular directions (total of 6 hours).			
12	Solderabi Terminati	•	95% of the terminations is	to be soldered evenly and continuously.	Immerse the capacitor in a solution of ethanol (JIS-K-8101) at rosin (JIS-K-5902) (25% rosin in weight proportion). Preheat a 80 to 120℃ for 10 to 30 seconds. After preheating immerse in solder containing 2.5% silver for 5±0.5 seconds at 230±5℃. The dipping depth for microstrip type capacitors is up to 1 mm from the root of the terminal.		
13	Resistance to Soldering Heat		The measured and obsespecifications in the follow Item Appearance Capacitance Change Q I.R. Dielectric Strength	rved characteristics shall satisfy the ving table. Specification No marked defect Within ±2.5% or ±0.25pF (Whichever is larger) C≦ 220pF : Q≧ 10,000 220pF <c≦ (pf)<="" 25°c.="" 3,000="" 30%="" 470pf="" 470pf<c≦1,000pf="" 5,000="" :="" at="" c="" capacitance="" failure="" initial="" more="" no="" nominal="" of="" q≥="" specification="" th="" than="" the="" value=""><th>Preheat the capacitor at 80 to 100°C for 2 minutes and then at 150 to 200°C for 5 minutes. Immerse in solder containing 2.5% silver for 3±0.5 seconds at 270±5°C. Set at room temperature for 24±2 hours, then measure. The dipping depth for microstrip type capacitors is up to 2mm from the root of the terminal.</th></c≦>	Preheat the capacitor at 80 to 100°C for 2 minutes and then at 150 to 200°C for 5 minutes. Immerse in solder containing 2.5% silver for 3±0.5 seconds at 270±5°C. Set at room temperature for 24±2 hours, then measure. The dipping depth for microstrip type capacitors is up to 2mm from the root of the terminal.		
14	Temperat Cycle	ure	The measured and obse specifications in the follow Item Appearance Capacitance Change Q I.R. Dielectric Strength	erved characteristics shall satisfy the	Fix the capacitor to the supporting jig in the same manner and under the same conditions as (11). Perform the five cycles according to the four heat treatments listed in the following table. Then, repeat twice the successive cycles of immersion, each cycle consisting of immersion in a fresh water at 65 ± 5 °C for 15 minutes and immersion in a saturated uqueous solution of salt at 0±3 °C for 15 minutes. The cpapcitor is promptly washed with running water, dried with a dry cloth, and allowed to sit at room temperature for 24±2 hours. Step 1 2 3 4 Temp.(°C) −55±3 RoomTemp. 125±3 RoomTemp. Time(min.) 30±3 2 to 3 30±3 2 to 3		
					Apply the 24-hour heat (-10 to +65°C) and humidity (80 to 98%) treatment shown below, 10 consecutive times. Remove, set for		

The measured and observed characteristics shall satisfy the specifications in the following table.

pecinications in the follow	virig table.
Item	Specification
Appearance	No marked defect
Capacitance	Within ±5% or ±0.5pF
Change	(Whichever is larger)
	C≦ 220pF : Q≥10,000
Q	220pF <c≤ 470pf="" 5,000<="" :="" q≥="" td=""></c≤>
	470pF <c≦1,000pf 3,000<="" :="" q≥="" td=""></c≦1,000pf>
	More than 30% of the initial spec-
I.R.	ification value at 25℃.
	·

C: Nominal Capacitance (pF)

treatment shown below, 10 consecutive times. Remove, set for 24±2 hours at room temperature, and measure.

Continued on the following page.

Continued from the preceding page.

No.	Item	9	Specification	Test Method
16	High Temperature Load	the specifications in the fo	red characteristics shall satisfy illowing table. Specification No marked defect Within ±2.5% or ±0.25pF (Whichever is larger) C≦ 220pF : Q≥10,000 220pF <c≤ 3,000="" 30%="" 470pf="" 470pf<c≤1,000pf="" 5,000="" :="" initial="" more="" of="" q≥="" spec-<="" td="" than="" the=""><td>Apply 150% of the rated voltage for 2,000±12 hours at 125±3℃. Remove and set for 24±2 hours at room temperature, then measure. The charge/discharge current is less than 50mA.</td></c≤>	Apply 150% of the rated voltage for 2,000±12 hours at 125±3℃. Remove and set for 24±2 hours at room temperature, then measure. The charge/discharge current is less than 50mA.
		I.R.	ification value at 25℃.	
			C : Nominal Capacitance (pF)	

Table A

			Capacitance Change from 25℃ Value (%)							
Char. Code	Temp. Coeff. (ppm/℃) Note 1	−55℃		-3	0℃	−10 ℃				
	(ppin/c) Note i	Max.	Min.	Max.	Min.	Max.	Min.			
5C	0±30	0.58	-0.24	0.40	-0.17	0.25	-0.11			

Note 1 : Nominal values denote the temperature coefficient within a range of 25 to 125°C.

High Frequency Type

■ Features (ERA Series)

- Negligible inductance is achieved by its monolithic structure so the series can be used at frequencies above 1GHz.
- 2. Nickel barriered terminations of ERA series improve solderability and decrease solder leaching.
- ERA11A/21A series are designed for both flow and reflow soldering and ERA32 series are designed for reflow soldering.

■ Applications

High-frequency and high-power circuits.

■ Features (ERD Series)

- Negligible inductance is achieved by its monolithic structure so the series can be used at frequencies above 1GHz.
- ERD Series capacitors withstand at high temperatures because ribbon leads are attached with silver paste.
- ERD Series capacitors are easily soldered and are especially well suited in applications where only a soldering iron can be used.

			L	VV						
Part Number	Dimensions (mm)									
	L	W	T max.	е	g min.					
ERA11A	1.25 +0.5	1.0 +0.5	1.0±0.2	0.15 min.	0.3					
ERA21A	2.0 +0.5	1.25 +0.5	1.0±0.2	0.2 min.	0.5					
ERA21B			1.25±0.2	0.2 111111.	0.5					
ERA32X	3.2 ^{+0.6} _{-0.4}	2.5 ^{+0.5} _{-0.3}	1.7±0.2	0.3 min.	0.5					

*** : Capacitance Code

Part Number	Dimensions (mm)							
	L max.	W max.	T max.					
ERD32D	4.0	3.0	2.3					

■ Application

High-frequency and high-power circuits.

Part Number	ERA11		ERA21			ERA32			ERD32			
LxW	1.25x1.00		2.00x1.25			3.20x2.50			4.00x3.00			
тс	C0G (5C)		C0G (5C)			C0G (5C)			C0G (5C)			
Rated Volt.	50 (1H)	100 (2A)	200 (2D)	50 (1H)	100 (2A)	200 (2D)	50 (1H)	100 (2A)	200 (2D)	50 (1H)	100 (2A)	200 (2D)
Capacitance (Ca	pacitance	part numbe	ering code)	and T(mm)	Dimension	n (T Dimens	ion part nu	ımbering c	ode)			
0.5pF(R50)			1.00(A)			1.00(A)			1.70(X)			2.30(D)
0.6pF(R60)			1.00(A)			1.00(A)			1.70(X)			2.30(D)
0.7pF(R70)			1.00(A)			1.00(A)			1.70(X)			2.30(D)
0.8pF(R80)			1.00(A)			1.00(A)			1.70(X)			2.30(D)
0.9pF(R90)			1.00(A)			1.00(A)			1.70(X)			2.30(D)
1.0pF(1R0)			1.00(A)			1.00(A)			1.70(X)			2.30(D)
1.1pF(1R1)			1.00(A)			1.00(A)			1.70(X)			2.30(D)
1.2pF(1R2)			1.00(A)			1.00(A)			1.70(X)			2.30(D)
1.3pF(1R3)			1.00(A)			1.00(A)			1.70(X)			2.30(D)
1.4pF(1R4)			1.00(A)			1.00(A)			1.70(X)			2.30(D)
1.5pF(1R5)			1.00(A)			1.00(A)			1.70(X)			2.30(D)
1.6pF(1R6)			1.00(A)			1.00(A)			1.70(X)			2.30(D)
1.7pF(1R7)			1.00(A)			1.00(A)			1.70(X)			2.30(D)
1.8pF(1R8)			1.00(A)			1.00(A)			1.70(X)			2.30(D)
1.9pF(1R9)			1.00(A)			1.00(A)			1.70(X)			2.30(D)
2.0pF(2R0)			1.00(A)			1.00(A)			1.70(X)			2.30(D)
2.1pF(2R1)			1.00(A)			1.00(A)			1.70(X)			2.30(D)

 $\begin{tabular}{|c|c|c|c|}\hline \end{tabular}$ Continued from the preceding page.

Part Number	ERA11			ERA21			ERA32			ERD32			
LxW	1.25x1.00			2.00x1.25			3.20x2.50			4.00x3.00			
тс		C0G (5C)			C0G (5C)			C0G (5C)			C0G (5C)		
Rated Volt.	50 (1H)	100 (2A)	200 (2D)	50 (1H)	100 (2A)	200 (2D)	50 (1H)	100 (2A)	200 (2D)	50 (1H)	100 (2A)	200 (2D)	
Capacitance (Ca	pacitance	part numbe	ering code)	and T(mm)	Dimension	n (T Dimens	ion part nu	ımbering c	ode)				
2.2pF(2R2)			1.00(A)			1.00(A)			1.70(X)			2.30(D)	
2.4pF(2R4)			1.00(A)			1.00(A)			1.70(X)			2.30(D)	
2.7pF(2R7)			1.00(A)			1.00(A)			1.70(X)			2.30(D)	
3.0pF(3R0)			1.00(A)			1.00(A)			1.70(X)			2.30(D)	
3.3pF(3R3)			1.00(A)			1.00(A)			1.70(X)			2.30(D	
3.6pF(3R6)			1.00(A)			1.00(A)			1.70(X)			2.30(D	
3.9pF(3R9)			1.00(A)			1.00(A)			1.70(X)			2.30(D)	
4.3pF(4R3)			1.00(A)			1.00(A)			1.70(X)			2.30(D)	
4.7pF(4R7)			1.00(A)			1.00(A)			1.70(X)			2.30(D)	
5.1pF(5R1)			1.00(A)			1.00(A)			1.70(X)			2.30(D)	
5.6pF(5R6)			1.00(A)			1.00(A)			1.70(X)			2.30(D)	
6.2pF(6R2)			1.00(A)			1.00(A)			1.70(X)			2.30(D)	
6.8pF(6R8)			1.00(A)			1.00(A)			1.70(X)			2.30(D)	
7.5pF(7R5)			1.00(A)			1.00(A)			1.70(X)			2.30(D)	
8.2pF(8R2)			1.00(A)			1.00(A)			1.70(X)			2.30(D)	
9.1pF(9R1)			1.00(A)			1.25(B)			1.70(X)			2.30(D)	
10pF(100)			1.00(A)			1.25(B)			1.70(X)			2.30(D)	
11pF(110)			1.00(A)			1.25(B)			1.70(X)			2.30(D)	
12pF(120)			1.00(A)			1.25(B)			1.70(X)			2.30(D)	
13pF(130)			1.00(A)			1.25(B)			1.70(X)			2.30(D)	
15pF(150)		1.00(A)				1.25(B)			1.70(X)			2.30(D)	
16pF(160)		1.00(A)				1.25(B)			1.00(X)			2.30(D)	
18pF(180)		1.00(A)				1.25(B)			1.70(X)			2.30(D)	
20pF(200)		1.00(A)				1.25(B)			1.70(X)			2.30(D)	
22pF(220)		1.00(A)				1.25(B)			1.70(X)			2.30(D)	
24pF(240)	1.00(A)					1.25(B)			1.70(X)			2.30(D)	
27pF(270)	1.00(A)					1.25(B)			1.70(X)			2.30(D)	
30pF(300)	1.00(A)					1.25(B)			1.70(X)			2.30(D)	
33pF(330)	1.00(A)					1.25(B)			1.70(X)			2.30(D)	
36pF(360)	1.00(A)					1.25(B)			1.70(X)			2.30(D)	
39pF(390)	1.00(A)					1.25(B)			1.70(X)			2.30(D)	
43pF(430)	1.00(A)					1.25(B)			1.70(X)			2.30(D)	
47pF(470)	1.00(A)					1.25(B)			1.70(X)			2.30(D)	
51pF(510)	1.00(A)				1 0F(P)	1.25(B)			1.70(X)			2.30(D)	
56pF(560)					1.25(B)				1.70(X)			2.30(D)	
62pF(620)					1.25(B)				1.70(X)			2.30(D)	
68pF(680)					1.25(B)				1.70(X)			2.30(D)	
75pF(750)					1.25(B)				1.70(X)			2.30(D)	
82pF(820)					1.25(B)				1.70(X)			2.30(D)	
91pF(910)				1.00(4)	1.25(B)				1.70(X)			2.30(D)	
100pF(101)				1.00(A)					1.70(X)			2.30(D)	
110pF(111)				1.25(B)					1.70(X)			2.30(D)	
120pF(121)				1.25(B)					1.70(X)			2.30(D)	
130pF(131)				1.25(B)					1.70(X)			2.30(D)	
150pF(151)				1.25(B)					1.70(X)			2.30(D)	
160pF(161)				1.25(B)				1 70/\$	1.70(X)		2.20/51	2.30(D	
180pF(181)								1.70(X)			2.30(D)		
200pF(201)								1.70(X)			2.30(D)		
220pF(221)								1.70(X)			2.30(D)		
240pF(241)								1.70(X)			2.30(D)		
270pF(271) 300pF(301)								1.70(X) 1.70(X)			2.30(D) 2.30(D)		

Continued from the preceding page.

Part Number		ERA11			ERA21			ERA32			ERD32	
L x W		1.25x1.00)		2.00x1.25			3.20x2.50			4.00x3.00	
тс		C0G (5C)										
Rated Volt.	50 (1H)	100 (2A)	200 (2D)	50 (1H)	100 (2A)	200 (2D)	50 (1H)	100 (2A)	200 (2D)	50 (1H)	100 (2A)	200 (2D)
Capacitance (Ca	pacitance	part numb	ering code)	and T(mm)	Dimension	n (T Dimens	sion part nu	umbering co	ode)	1		
330pF(331)								1.70(X)			2.30(D)	
360pF(361)								1.70(X)			2.30(D)	
390pF(391)								1.70(X)			2.30(D)	
430pF(431)								1.70(X)			2.30(D)	
470pF(471)								1.70(X)			2.30(D)	
510pF(511)								1.70(X)			2.30(D)	
560pF(561)							1.70(X)			2.30(D)		
620pF(621)							1.70(X)			2.30(D)		
680pF(681)							1.70(X)			2.30(D)		
750pF(751)							1.70(X)			2.30(D)		
820pF(821)							1.70(X)			2.30(D)		
910pF(911)							1.70(X)			2.30(D)		
1000pF(102)							1.70(X)			2.30(D)		

The part numbering code is shown in $\ (\).$

Dimensions are shown in mm and Rated Voltage in Vdc.

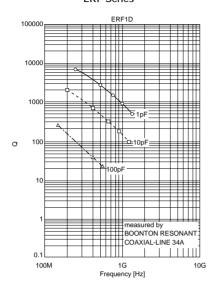
No.	Ite	em	Specification		Test Method	
1	Operating −55°C to Temperature Range		-55℃ to +125℃			
2	2 Rated Voltage		See the previous pages.	The rated voltage is defined as the maximum voltage which may be applied continuously to the capacitor. When AC voltage is superimposed on DC voltage, V ^{P-P} or V ^{O-P} , whichever is larger, shall be maintained within the rated voltage range.		
3	Appearar	nce	No defects or abnormalities.	Visual inspection.		
4	Dimensio	ns	Within the specified dimension.	Using calipers.		
5	Dielectric	Strength	No defects or abnormalities.	applied between the to	served when 300% of the rated voltage is erminations for 1 to 5 seconds, provided current is less than 50mA.	
6	Insulation (I.R.)	Resistance	10,000MΩ min.		nce shall be measured with a DC voltage ed voltage at 25°C and standard humidity of charging.	
7	Capacita	nce	Within the specified tolerance.	The capacitance/Q sh	all be measured at 25℃ at the frequency	
8			C≦ 220pF : Q≥10,000 220pF <c≦ 470pf="" 5,000<br="" :="" q≥="">470pF<c≤1,000pf 3,000<br="" :="" q≥="">C : Nominal Capacitance (pF)</c≤1,000pf></c≦>	and voltage shown in Item Character Frequency Voltage		
		Capacitance Variation Rate Within the specified tolerance. (Table A-6)		The temperature coefficient is determined using the capacitance measured in step 3 as a reference. When cycling the temperature sequentially from step 1 through 5, the capacitance of t		
		Temperature Coefficient	Within the specified tolerance. (Table A-6)	tance shall be within the specified tolerance for the temperature coefficient and capacitance change as Table A. The capacitance drift is calculated by dividing the differences		
9	Capacitance Temperature Characteristics	Capacitance Drift	Within ±0.2% or ±0.05pF (Whichever is larger)	step 1, 3 and 5 by the	ige shall be measured after 5 min. at	
10	Terminal	Adhesive Strength of Termination (for chip type)	No removal of the terminations or other defects shall occur.	Fig.1 using solder condone either with an irocare so the soldering is shock. Then apply a 1	to the test jig (alumina substrate) shown in taining 2.5% silver. The soldering shall be no or in furnace and be conducted with s uniform and free of defects such as heat 0N* force in the direction of the arrow. *5N (ERA11)	
10	Strength	Tensile Strength (for micro- strip type)	Capacitor shall not be broken or damaged.	The capacitor body is the axial direction unti	fixed and a load is applied gradually in I its value reaches 5N.	
	Bending Strength of lead wire		Lead wire shall not be cut or broken.	Position the main body of the capacitor so the lead wire nal is perpendicular, and load 2.5N to the lead wire term Bend the main body by 90 degrees, bend back to origin tion, bend 90 degrees in the reverse direction, and then back to original position.		

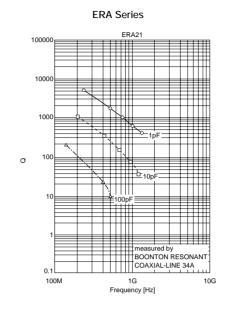
	Continued from the preceding page.						
No.	Ite	em	:	Specification	Test Method		
		Appearance	No defects or abnormalities	es.	Solder the capacitor to the test jig (alumina substrate) shown in		
		Capacitance	Within the specified tolera	ance.	Fig.2 using solder containing 2.5% silver. The soldering shall done either with an iron or using the reflow method and shall		
11	Vibration Resistance $Q \qquad \begin{array}{c} \text{Satisfies the initial value.} \\ \mathbb{C} \leq \ 220 \text{pF} : \mathbb{Q} \geq 10, \\ 220 \text{pF} < \mathbb{C} \leq \ 470 \text{pF} : \mathbb{Q} \geq 5, \\ 470 \text{pF} < \mathbb{C} \leq 1,000 \text{pF} : \mathbb{Q} \geq 3, \\ \mathbb{C} : \text{Nominal Capacitance (pf.)} \end{array}$		C≦ 220pF: Q≧ 220pF <c≦ 470pf:="" q≥<br="">470pF<c≦1,000pf: q≥<="" td=""><td>5,000 3,000</td><td colspan="3">conducted with care so the soldering is uniform and free of defects such as heat shock. The capacitor shall be subjected to a simple harmonic motion having a total amplitude of 1.5mm, the frequency being varied uniformly between the approximate limits of 10 and 55Hz. The frequency range, from 10 to 55Hz and return to 10Hz, shall be traversed in approximately 1 minute. This motion shall be applied for a period of 2 hours in each 3 mutually perpendicular directions (total of 6 hours). Solder resist Ag/Pd Alumina substrate Fig.2</td></c≦1,000pf:></c≦>	5,000 3,000	conducted with care so the soldering is uniform and free of defects such as heat shock. The capacitor shall be subjected to a simple harmonic motion having a total amplitude of 1.5mm, the frequency being varied uniformly between the approximate limits of 10 and 55Hz. The frequency range, from 10 to 55Hz and return to 10Hz, shall be traversed in approximately 1 minute. This motion shall be applied for a period of 2 hours in each 3 mutually perpendicular directions (total of 6 hours). Solder resist Ag/Pd Alumina substrate Fig.2		
					Immerse the capacitor in a solution of ethanol (JIS-K-8101) and		
12	Solderab Terminati		75% of the terminations is	to be soldered evenly and continuously.	rosin (JIS-K-5902) (25% rosin in weight proportion). Preheat at 80 to 120°C for 10 to 30 seconds. After preheating immerse in solder containing 2.5% silver for 5 \pm 0.5 seconds at 230 \pm 5°C. The dipping depth for microstrip type capacitors is up to 1 mm from the root of the terminal.		
			The measured and obse	erved characteristics shall satisfy the			
			specifications in the follow	-	Preheat according to the conditions listed in the table below.		
		Item		Specification	Immerse in solder containing 2.5% silver for 3±0.5 seconds at		
			Appearance Capacitance	No marked defect Within ±2.5% or ±0.25pF	270±5°C. Set at room temperature for 24±2 hours, then mea-		
13	Resistanc	:e	Change	(Whichever is larger)	sure. The dipping depth for microstrip type capacitors is up to 2mm from the root of the terminal.		
	to Solderi	ng Heat		C≦ 220pF : Q≧10,000	Chip Size Preheat Condition		
			Q	220pF <c≦ 470pf="" 5,000<="" :="" q≥="" td=""><td>2.0×1.25mm max. 1minute at 120 to 150°C</td></c≦>	2.0×1.25mm max. 1minute at 120 to 150°C		
				470pF <c≦1,000pf 3,000<="" :="" q≥="" td=""><td>3.2×2.5mm Each 1 minute at 100 to 120°C and then 170 to 200°C</td></c≦1,000pf>	3.2×2.5mm Each 1 minute at 100 to 120°C and then 170 to 200°C		
			Dielectric Strength	No failure	3.2.×2.311111 Lacii 1 Illilliule at 100 to 120 c and then 170 to 200 c		
				C : Nominal Capacitance (pF)			
			The measured and obsesspecifications in the follow	erved characteristics shall satisfy the			
			Item	Specification	Fix the conscitor to the curporting iig in the come mapper and		
			Appearance	No marked defect	Fix the capacitor to the supporting jig in the same manner and under the same conditions as (11). Perform the five cycles		
			Capacitance	Within ±5% or ±0.5pF	according to the four heat treatments listed in the following table.		
11	Tempera	ture	Change	(Whichever is larger)	Let sit for 24±2 hours at room temperature, then measure.		
14	Cycle			C≧30pF : Q≧350	Step 1 2 3 4		
			Q	10pF≦C<30pF : Q≥275+ ½ C	Temp.(°C) -55^{+0}_{-3} RoomTemp. 125^{+3}_{-0} RoomTemp.		
			I.R.	C<10pF : Q≥200+10C 1,000MΩ min.	Time(min.) 30±3 2 to 3 30±3 2 to 3		
			Dielectric Strength	No failure			
				C : Nominal Capacitance (pF)			
15	Humidity		The measured and obsespecifications in the follow Item Appearance Capacitance Change Q I.R.	erved characteristics shall satisfy the	Apply the 24-hour heat (-10 to +65°C) and humidity (80 to 98%) treatment shown below, 10 consecutive times. Remove, set for 24±2 hours at room temperature, and measure. To Humidity 80-98% H		
					0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 2021 22 23 24 Hours		
					riodia		

ge

No.	Item	9	Specification	Test Method
		The measured and obse specifications in the follow	rved characteristics shall satisfy the ving table.	
		Item	Specification	
		Appearance	No marked defect	Apply 200% of the rated voltage for 1,000±12 hours at 125±3°C. Remove and set for 24±2 hours at room temperature, then measure. The charge/discharge current is less than 50mA.
		Capacitance	Within ±3% or ±0.3pF	
16	High Temperature	Change	(Whichever is larger)	
	Load		C≥30pF : Q≥350 10pF≤C<30pF : Q≥275+ ½ C C<10pF : Q≥200+10C	
		I.R.	1,000MΩ min.	
			C : Nominal Capacitance (pF)	

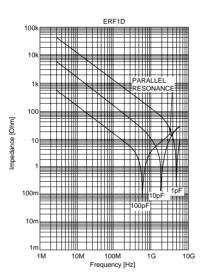
Table A

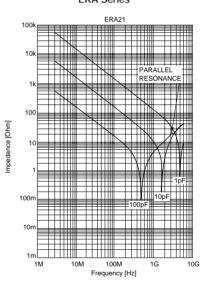

		Capacitance Change from 25℃ Value (%)							
Char. Code	Temperature Coefficient (ppm/°C) Note 1	-5	5℃	-3	0℃	−10 °C			
	(ppin/c) Note i	Max.	Min.	Max.	Min.	Max.	Min.		
5C	0±30	0.58	-0.24	0.40	-0.17	0.25	-0.11		


Note 1 : Nominal values denote the temperature coefficient within a range of 25 to 125°C.

ERA/ERD/ERF/ERH Series Data

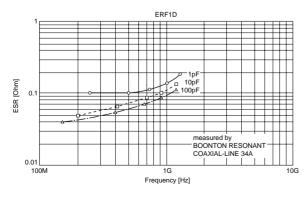
■ Q-Frequency Characteristics


ERF Series

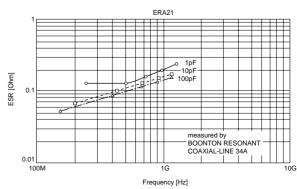


■ Impedance-Frequency Characteristics

ERF Series



ERA Series

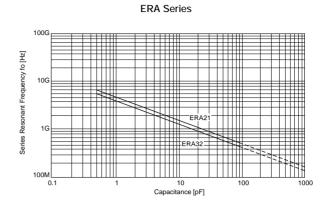


■ ESR-Frequency Characteristics

ERF Series

ERA Series

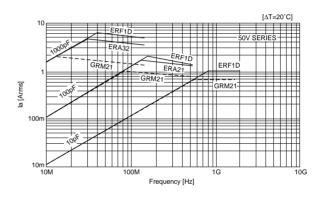


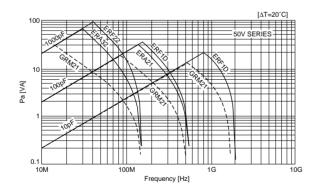


Continued from the preceding page.

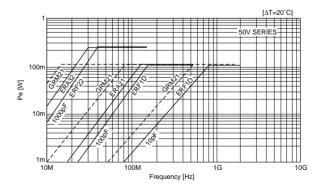
■ Resonant Frequency-Capcitance

ERF Series




■ Allowable Voltage-Frequency

100 [AT=20°C] 50V SERIES 100 101 10M 100M 100M 10G Frequency [Hz]


■ Allowable Current-Frequency

■ Allowable Appearent Power-Frequency

■ Allowable Effcteve Power-Frequency

Package

■ Packaging Code

Dackaging Type	Tono Carrier Dookeging	Pulk Cose Deckering	Bulk Packaging		
Packaging Type	Tape Carrier Packaging	Bulk Case Packaging	Bulk Packaging in a bag	Bulk Packaging in a tray	
Packaging Code	D, L, K, J, E, F	С	В	Т	

■ Minimum Quantity Guide

		Dimensions (mm)		Quantity (pcs.)						
Part Number		, ,			ø180mm reel		ø330mm reel		Bulk Case	Bulk Bac
		L	W	T	Paper Tape	Plastic Tape	Paper Tape	Plastic Tape		
Jltra-miniaturized	GRP03	0.6	0.3	0.3	15,000	-	-	-	-	1,000
	GRM18	1.6	0.8	0.8	4,000	-	10,000	-	15,000	1,000
				0.6	4,000	-	10,000	-	10,000	1,000
	GRM21	2.0	1.25	0.85	4,000	-	10,000	-	-	1,000
For Flow/Reflow				1.25	-	3,000	-	10,000	5,000 3)	1,000
				0.85	4,000	-	10,000	-	-	1,000
	GRM31	3.2	1.6	1.15	-	3,000	-	10,000	-	1,000
				1.6	-	2,000	-	6,000	-	1,000
	GRP/GRM155	1.0	0.5	0.5	10,000	-	50,000	-	50,000	1,000
	GRP15X	1.0	0.5	0.25	10,000	-	50,000	-	-	1,000
				1.15	-	3,000	-	10,000	-	1,000
				1.35	-	2,000	-	8,000	-	1,000
	GRM32	3.2	2.5	1.8/1.6	-	1,000	-	4,000	-	1,000
				2.0	-	1,000	-	4,000	-	1,000
				2.5	-	1,000	-	4,000	-	1,000
For Reflow				1.15	-	1,000	-	5,000	-	1,000
	CDM42	4.5	3.2	1.35/1.6 1.8/2.0	-	1,000	-	4,000	-	1,000
	GRM43	4.5		2.5	-	500	-	2,000	-	1,000
				2.8	-	500	-	1,500	-	1,000
	GRM55	5.7	5.0	1.15	-	1,000	-	5,000	-	1,000
				1.35/1.6 1.8/2.0	-	1,000	-	4,000	-	1,000
				2.5	-	500	-	2,000	-	500
				3.2	-	300	-	1,500	-	500
ligh-power Type	GJ615	1.0	0.5	0.5	10,000	-	50,000	-	50,000	1,000
	GJ221	2.0	1.25	1.25	-	3,000	-	10,000	-	-
	GJ231	3.2	3.2 1.6	1.15	-	3,000	-	10,000	-	-
				1.35	-	2,000	-	8,000	-	-
Smoothing 1)	GJ232	2 3.2	3.2 2.5	1.6	-	2,000	-	6,000	-	-
				1.8	-	1,000	-	4,000	-	-
		4.5		1.8	-	1,000	-	3,000	-	-
	GJ243		3.2	2.2	-	500	-	2,000	-	-
	GQM18	1.6	0.8	0.8	4,000	-	10,000	-	-	1,000
	GQM21	2.0	1.25	0.85	4,000	-	10,000	-	-	1,000
	ERA11	1.25	1.0	1.0	-	-	-	-	-	1,000
High-frequency	ERA21	2.0	1.25	1.0/1.25	-	3,000	-	-	-	1,000
- , ,	ERA32	3.2	2.5	1.7	-	2,000	-	-	-	1,000
	ERF1D	1.4	1.4	1.15	-	2,000	-	-	-	1,000
	ERF22	2.8	2.8	2.3	-	1,000	-	-	-	1,000
For Ultrasonic	GRM21	2.0	1.25	0.85	4,000	-	10,000	-	-	1,000
	GMA05	0.5	0.5	0.35	-	-	-	-	-	400 2)
Micro Chip	GMA08	0.8	0.8	0.5	-	-	-	-	-	400 2)
				0.8	4,000	-	10,000	-	-	1,000
Array	GNM31	3.2	1.6	1.0	-	3,000	-	10,000	-	1,000
	LLL18	0.8	1.6	0.6	4,000	-	10,000	-	-	1,000
		0.0		0.6	-,000	4,000	-	10,000	-	1,000
Low ESL	LLL21	1.25	.25 2.0	0.85	-	3,000	-	10,000	_	1,000
LOW ESE				0.03		4,000	-	10,000		1,000
	LLL31	1.6	3.2	1.15	<u> </u>	3,000	-	10,000		1,000

¹⁾ Smoothing rated are available by taping packages only.

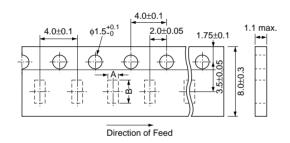
²⁾ Tray

^{3) 3.3/4.7} μF of 6.3 R6 rated are not available by bulk case.

Package

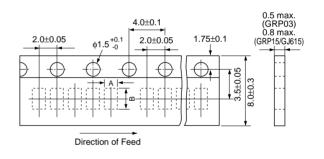
Continued from the preceding page.

■ Tape Carrier Packaging


(1) Dimensions of Reel

(2) Dimensions of Paper Tape

(T=0.85mm)



2.8±0.2

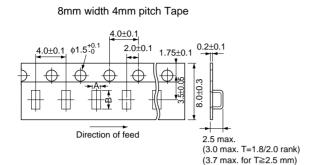
 3.6 ± 0.2

8mm width 2mm pitch Tape

Part Number	A*	B*
GRP03	0.37	0.67
GJ615 GRP/GRM15	0.65	1.15

*Nominal Value

(in mm)



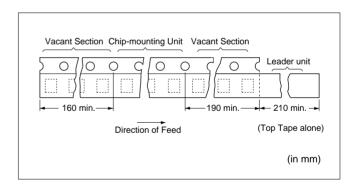
*Nominal Value

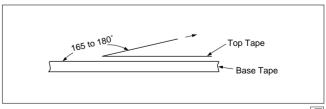
Package

Continued from the preceding page.

(3) Dimensions of Plastic Tape

А	В
1.05±0.1	1.85±0.1
1.45±0.2	2.25±0.2
1.9±0.2	3.5±0.2
2.8±0.2	3.5±0.2
1.8*	2.6*
2.8*	3.5*
2.0*	2.1*
3.1*	3.2*
	1.05±0.1 1.45±0.2 1.9±0.2 2.8±0.2 1.8* 2.8* 2.0*

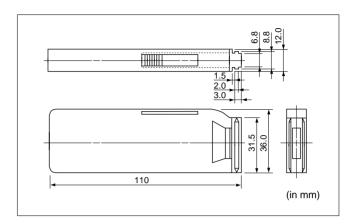

Part Number	A*	B*
GRM43, GJ243	3.6	4.9
GRM55	5.2	6.1


*Nominal Value

(in mm)

(4) Taping Method

- ① Tapes for capacitors are wound clockwise. The sprocket holes are to the right as the tape is pulled toward the user.
- ② Part of the leader and part of the empty tape shall be attached to the end of the tape as follows.
- ③ The top tape and base tape are not atteached at the end of the tape for a minimum of 5 pitches.
- Missing capacitors number within 0.1% of the number per reel or 1 pc, whichever is greater, and are not continuous.
- ⑤ The top tape and bottom tape shall not protrude beyond the edges of the tape and shall not cover sprocked holes.
- 6 Cumulative tolerance of sprocket holes, 10 pitches : ± 0.3 mm.
- Peeling off force: 0.1 to 0.6N* in the direction shown below. *GRP03:0.05 to 0.5N


Package

Continued from the preceding page.

■ Dimensions of Bulk Case Packaging

The bulk case used antistatic materials. Please contact

Murata for details.

⚠Caution

■ Storage and Operating Conditions

Chip monolithic ceramic capacitors (chips) can experience degradation of termination solderability when subjected to high temperature or humidity, or if exposed to sulfur or chlorine gases.

Storage environment must be at an ambient temperature of 5-40 C. and an ambient humidity of 20-70%RH.

Use chip within 6 months. If 6 months or more have elapsed, check solderability before use.

(Reference Data 1. Solderability)

■ Handling

1. Inspection

Thrusting force of the test probe can flex the PCB, resulting in cracked chips or open solder joints. Provide support pins on the back side of the PCB to prevent warping or flexing.

- 2. Board Separation (or Depane-lization)
- •Board flexing at the time of separation causes cracked chips or broken solder.
- •Severity of stresses imposed on the chip at the time

of board break is in the order of :

Pushback<Slitter<V Slot<Perforator.

- •Board separation must be performed using special jigs, not with hands.
- Reel and bulk case
 In the handling of reel and case, please pay attention not to drop it. Please do not use chip of the case which dropped.

△Caution

■ Soldering and Mounting

1. Mounting Position

Choose a mounting position that minimizes the stress imposed on the chip during flexing or bending of the board.

[Component Direction]

Locate chip horizontal to the direction in which stress acts

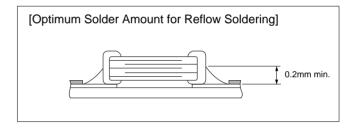
[Chip Mounting Close to Board Separation Point]

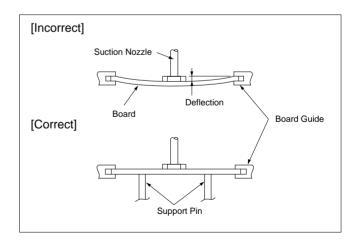
Perforation

Chip arrangement Worst A-C-(B=D) Best

(Reference Data 2. Board bending strength for solder fillet height) (Reference Data 3. Temperature cycling for solder fillet height) (Reference Data 4. Board bending strength for board material)

2. Solder Paste Printing


 Overly thick application of solder paste results in excessive fillet height solder.


This makes the chip more susceptible to mechanical and thermal stress on the board and may cause cracked chips.

- Too little solder paste results in a lack of adhesive strength on the outer electrode, which may result in chips breaking loose from the PCB.
- Make sure the solder has been applied smoothly to the end surface to a height of 0.2mm min..

3. Chip Placing

- An excessively low bottom dead point of the suction nozzle imposes great force on the chip during mounting, causing cracked chips. So adjust the suction nozzle's bottom dead point by correcting warp in the board. Normally, the suction nozzle's bottom dead point must be set on the upper surface of the board. Nozzle pressure for chip mounting must be a 1 to 3N static load.
- Dirt particles and dust accumulated between the suction nozzle and the cylinder inner wall prevent the nozzle from moving smoothly. This imposes great force on the chip during mounting, causing cracked chips. And the locating claw, when worn out, imposes uneven forces on the chip when positioning, causing cracked chips. The suction nozzle and the locating claw must be maintained, checked and replaced periodically. (Reference Data 5. Break strength)

⚠Caution

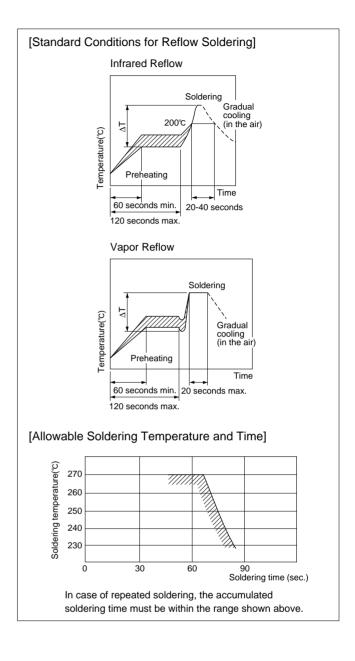
Continued from the preceding page.

4. Reflow Soldering

- Sudden heating of the chip results in distortion due to excessive expansion and construction forces within the chip causing cracked chips. So when preheating, keep temperature differential, ΔT, within the range shown in Table 1. The smaller the ΔT, the less stress on the chip.
- When components are immersed in solvent after mounting, be sure to maintain the temperature difference (ΔT) between the component and solvent within the range shown in the above table.

Table 1

Part Number	Temperature Differential
GRP03/15, GRM18/21/31	
GJ615, GJ221/31	
LLL18/21/31	ΔΤ≦190℃
ERA11/21/32, ERF1D	
GQM18/21	
GRM32/43/55	
GNM31, GJ232/43	ΔΤ≦130℃
ERA32, ERF22	


Inverting the PCB

Make sure not to impose an abnormal mechanical shock on the PCB.

5. Leaded Component Insertion

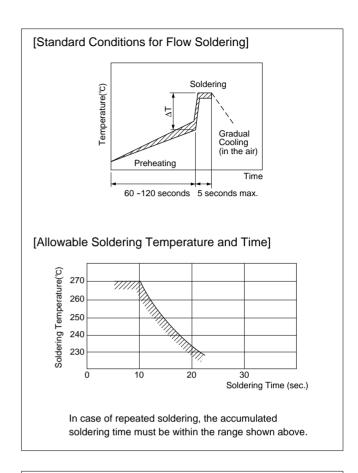
If the PCB is flexed when leaded components (such as transformers and ICs) are being mounted, chips may crack and solder joints may break.

Before mounting leaded components, support the PCB using backup pins or special jigs to prevent warping.

⚠Caution

6. Flow Soldering

Continued from the preceding page.


- Sudden heating of the chip results in thermal distortion causing cracked chips. And an excessively long soldering time or high soldering temperature results in leaching of the outer electrodes, causing poor adhesion or a reduction in capacitance value due to loss of contact between electrodes and end termination.
- When preheating, keep the temperature differential between solder temperature and chip surface temperature, ΔT , within the range shown in Table 2. The smaller the ΔT , the less stress on the chip. When components are immersed in solvent after mounting, be sure to maintain the temperature difference between the component and solvent within the range shown in Table 2.

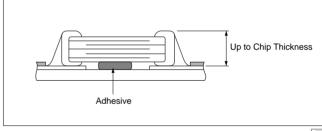

Do not apply flow soldering to chips not listed in Table 5.

Table 2

Part Number	Temperature Differential	
GRM18/21/31		
LLL21/31	AT<450%	
ERA11/21, ERF1D	ΔT≦150°C	
GQM18/21		

Optimum Solder Amount for Flow Soldering

Ontinued from the preceding page.

7. Correction with a Soldering Iron

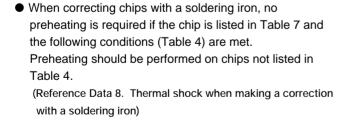
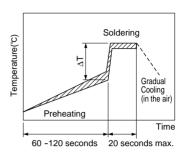
(1) For Chip Type Capacitors < Except GJ2 Series>

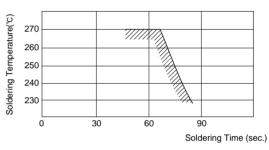
 Sudden heating of the chip results in distortion due to a high internal temperature differential, causing cracked chips. When preheating, keep temperature differential, ΔT, within the range shown in Table 3. The smaller the ΔT, the less stress on the chip.

Table 3

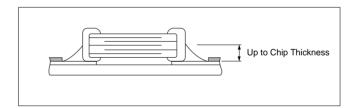
Part Number	Temperature Differential
GRP15, GRM15/18/21/31	
GJ615	
LLL18/21/31	ΔΤ≦190℃
GQM18/21	
ERA11/21, ERF1D	
GRM32/43/55	
GNM31	ΔΤ≦130℃
ERA32, ERF22	

 Optimum Solder Amount when Corrections Are Made Using a Soldering Iron


Table 4 Correction with a Soldering Iron

Part Number	Temperature of Iron Tip	Soldering Iron Wattage	Diameter of Iron Tip	Restriction
GRP15, GRM15/18/21				
GJ615				
LLL18/21	300℃ max.		φ 3mm max.	Do not allow the iron tip to directly touch the ceramic element.
GQM18/21				
ERA11/21, ERF1D		20W max.		
GRM31				
LLL31	270℃ max.			
GNM31				


[Standard Conditions for Soldering Iron Temperature]

[Allowable Time and Temperature for Making Corrections with a Soldering Iron]

The accumulated soldering Time / temperature including reflow / flow soldering must be within the range shown above.

⚠Caution

Continued from the preceding page.

(2) For GJ2 Series

• When solder GJ2 series chip capacitor, keep the following conditions.

<Soldering iron method>

Part Number	Pre-heating	Temperature of iron tip	Soldering iron wattage	Diameter of iron tip	Soldering time	Soldering amount	Restriction
GJ221/31/32/43	Δ≦130℃	300℃ max.	20W max.	φ 3mm max.	5 sec. max.	≤1/2 of chip thickness	Do not allow the iron tip to directly touch the ceramic element.

(3) For Microstrip Types

- Solder 1mm away from the ribbon terminal base, being careful that the solder tip does not directly contact the capacitor. Preheating is unnecessary.
- Complete soldering within 3 seconds with a soldering tip less than 270°C in temperature.

8. Washing

Excessive output of ultrasonic oscillation during cleaning causes PCBs to resonate, resulting in cracked chips or broken solder. Take note not to vibrate PCBs.

Failure to follow the above cautions may result, worst case, in a short circuit and fuming when the products is used.

■ Rating

Die Bonding/Wire Bonding (GMA Series)

- 1. Die Bonding of Capacitors
- •Use the following materials

Braze alloy: Au-Si (98/2) 400 to 420degree C in N2 atmosphere

Au-Sn (80/20) 300 to 320degree C in N2 atmosphere Au-Ge (88/12) 380 to 400degree C in N2 atmosphere

- Mounting
- (1) Control the temperature of the substrate so that it matches the temperature of the braze alloy.
- (2) Place braze alloy on substrate and place the capacitor on the alloy. Hold the capacitor and

gently apply the load. Be sure to complete the operation in 1 minute.

- 2. Wire Bonding
- •Wire

Gold wire: 20mm (0.0008 inch), 25mm (0.001 inch) diameter

- Bonding
- (1) Thermocompression, ultrasonic ball bonding.
- (2) Required stage temperature: 150 to 250degree C
- (3) Required wedge or capillary weight: 0.5N to 2N.
- (4) Bond the capacitor and base substrate or other devices with gold wire.

■ Soldering and Mounting

1. PCB Design

(1) Notice for Pattern Forms

Unlike leaded components, chip components are susceptible to flexing stresses since they are mounted directly on the substrate.

They are also more sensitive to mechanical and thermal stresses than leaded components.

Excess solder fillet height can multiply these stresses and cause chip cracking. When designing substrates, take land patterns and dimensions into consideration to eliminate the possibility of excess solder fillet height.

Pattern Forms

	Placing Close to Chassis	Placing of Chip Components and Leaded Components	Placing of Leaded Components after Chip Component	Lateral Mounting
Incorrect	Chassis Solder (ground) Electrode Pattern	Lead Wire	Soldering Iron Lead Wire	
Correct	Solder Resist	Solder Resist	Solder Resist	Solder Resist

Continued from the preceding page.

(2) Land Dimensions

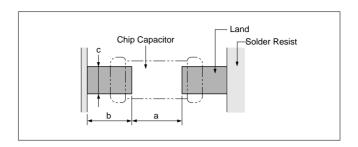


Table 1 Flow Soldering Method

Dimensions Part Number	Dimensions (LXW)	a	b	С
GRM18 GQM18	1.6×0.8	0.6-1.0	0.8-0.9	0.6-0.8
GRM21 GQM21	2.0×1.25	1.0-1.2	0.9-1.0	0.8-1.1
GRM31	3.2×1.6	2.2-2.6	1.0-1.1	1.0-1.4
LLL21	1.25×2.0	0.4-0.7	0.5-0.7	1.4-1.8
LLL31	1.6×3.2	0.6-1.0	0.8-0.9	2.6-2.8
ERA11	1.25×1.0	0.4-0.6	0.6-0.8	0.8-1.0
ERA21	2.0×1.25	1.0-1.2	0.9-1.0	0.8-1.0
ERF1D	1.4×1.4	0.5-0.8	0.8-0.9	1.0-1.2

(in mm)

Table 2 Reflow Soldering Method

Dimensions Part Number	Dimensions (LXW)	a	b	С	
GRP03	0.6×0.3	0.2-0.3	0.2-0.35	0.2-0.4	
GRP15					
GRM15	1.0×0.5	0.3-0.5	0.35-0.45	0.4-0.6	
GJ615					
GRM18	1.6×0.8	0.6-0.8	0.6-0.7	0.6-0.8	
GQM18	1.0 × 0.0	0.0-0.6	0.0-0.7	0.0-0.8	
GRM21					
GQM21	2.0×1.25	1.0-1.2	0.6-0.7	0.8-1.1	
GJ221					
GRM31	3.2×1.6	2.2-2.4	0.8-0.9	1.0-1.4	
GJ231	5.2 × 1.0	2.2 2.4	0.0 0.9	1.0 1.4	
GRM32	3.2×2.5	2.0-2.4	1.0-1.2	1.8-2.3	
GJ232	J.Z. Z. J	2.0 2.4	1.0 1.2	1.0 2.3	
GRM43	4.5×3.2	3.0-3.5	1.2-1.4	2.3-3.0	
GJ243	4.57/0.2	0.0 0.0	1.2 1.7	2.5 5.0	
GRM55	5.7×5.0	4.0-4.6	1.4-1.6	3.5-4.8	
LLL18	0.8×1.6	0.2-0.4	0.3-0.4	1.0-1.4	
LLL21	1.25×2.0	0.4-0.6	0.3-0.5	1.4-1.8	
LLL31	1.6×3.2	0.6-0.8	0.6-0.7	2.6-2.8	
ERA11	1.25×1.0	0.4-0.6	0.6-0.8	0.8-1.0	
ERA21	2.0×1.25	1.0-1.2	0.6-0.8	0.8-1.0	
ERA32	3.2×2.5	2.2-2.5	0.8-1.0	1.9-2.3	
ERF1D	1.4×1.4	0.4-0.8	0.6-0.8	1.0-1.2	
ERF22	2.8×2.8	1.8-2.1	0.7-0.9	2.2-2.6	

(in mm)

Continued from the preceding page.

GNM Series for reflow soldering method

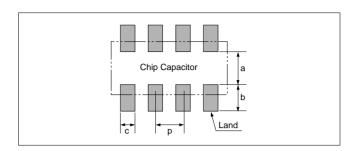
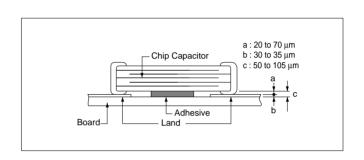


Table 3


Dort Number	Dimensions (mm)					
Part Number	L	W	a	b	С	р
GNM31	3.2	1.6	0.8-1.0	0.7-0.9	0.3-0.4	0.8

2. Adhesive Application

- Thin or insufficient adhesive causes chips to loosen or become disconnected when flow soldered. The amount of adhesive must be more than dimension C shown in the drawing below to obtain enough bonding strength. The chip's electrode thickness and land thickness must be taken into consideration.
- Low viscosity adhesive causes chips to slip after mounting. Adhesive must have a viscosity of 5000pa-s (500ps)min. (at 25°C)
- Adhesive Coverage*

<u>• </u>	
Part Number	Adhesive Coverage*
GRM18	O OF man Min
GQM18	0.05mg Min.
GRM21	O desa Mis
GQM21	0.1mg Min.
GRM31	0.15mg Min.

*Nominal Value

3. Adhesive Curing

Insufficient curing of the adhesive causes chips to disconnect during flow soldering and causes deteriorated insulation resistance between outer electrodes due to moisture absorption.

Control curing temperature and time in order to prevent insufficient hardening.

Inverting the PCB

Make sure not to impose an abnormal mechanical shock on the PCB.

4. Flux Application

- An excessive amount of flux generates a large quantity of flux gas, causing deteriorated solderability. So apply flux thinly and evenly throughout. (A foaming system is generally used for flow soldering).
- Flux containing too high a percentage of halide may cause corrosion of the outer electrodes unless sufficiently

cleaned. Use flux with a halide content of 0.2wt% max.. But do not use strongly acidix flux.

Wash thoroughly because water soluble flux causes deteriorated insulation resistance between outer electrodes unless sufficiently cleaned.

Continued from the preceding page.

5. Flow Soldering

 Set temperature and time to ensure that leaching of the outer electrode does not exceed 25% of the chip end area as a single chip (full length of the edge A-B-C-D shown below) and 25% of the length A-B shown below as mounted on substrate. [As a Single Chip]

B
D
D
Outer Electrode

[As Mounted on Substrate]

(Reference Data 6. Thermal shock) (Reference Data 7. Solder heat resistance)

■ Others

- Resin Coating
 When selecting resin materials, select those with low contraction.
- Circuit Design
 These capacitors on this catalog are not safety recognized products
- 3. Remarks

The above notices are for standard applications and conditions. Contact us when the products are used in special mounting conditions. Select optimum conditions for operation as they determine the reliability of the product after assembly. The data here in are given in typical values, not guaranteed ratings.

1. Solderability

(1) Test Method

Subject the chip capacitor to the following conditions. Then apply flux (a ethanol solution of 25% rosin) to the chip and dip it in 230°C eutectic solder for 2 seconds. Conditions:

Expose prepared at room temperature (for 6 months and 12 months, respectively)

Prepared at high temperature (for 100 hours at 85°C) Prepared left at high humidity (for 100 hours under 90%RH to 95%RH at 40℃)

(2) Test Samples

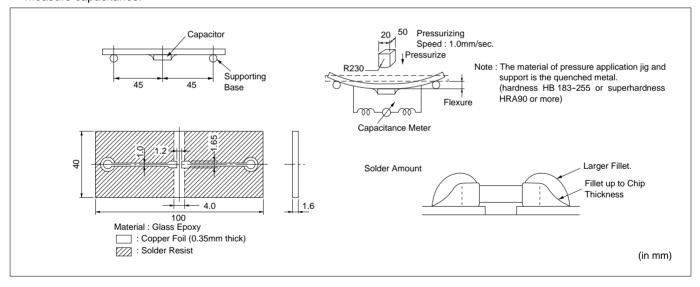
GRM21: Products for flow/reflow soldering.

(3) Acceptance Criteria

With a 60-power optical microscope, measure the surface area of the outer electrode that is covered with solder.

(4) Results

Refer to Table 1.


Table 1

Sample	Initial State	Prepared at Room Temperature		Prepared at High Temperature for	Prepared at High Humidity for 100 Hours at 90 to	
	Illitial State	6 months	12 months	100 Hours at 85℃	95% RH and 40℃	
GRM21 for flow/reflow soldering	95 to 100%	95 to 100%	95%	90 to 95%	95%	

2. Board Bending Strength for Solder Fillet Height

(1) Test Method

Solder the chip capacitor to the test PCB with the amount of solder paste necessary to achieve the fillet heights. Then bend the PCB using the method illustrated and measure capacitance.

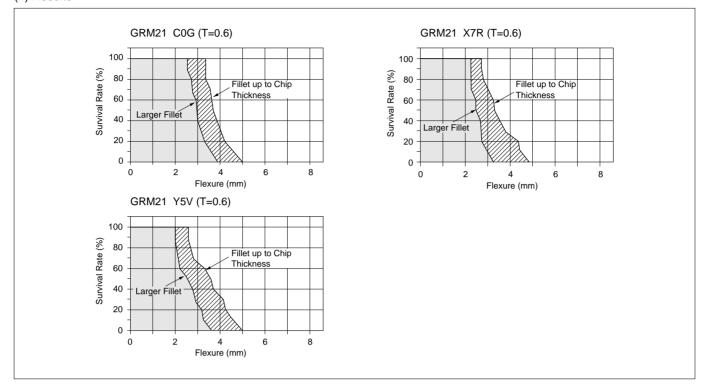
(2) Test Samples

GRM21 C0G/X7R/Y5V Characteristics T=0.6mm

(3) Acceptance Criteria

Products shall be determined to be defective if the change in capacitance has exceeded the values specified in Table 2.

Table 2


140.0 -			
Characteristics	Change in Capacitance		
COG	Within ±5% or ±0.5pF, whichever is greater		
X7R	Within ±12.5%		
Y5V	Within ±20%		

Continued from the preceding page.

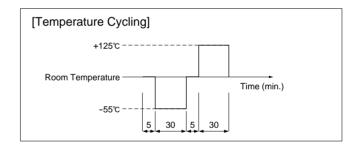
(4) Results

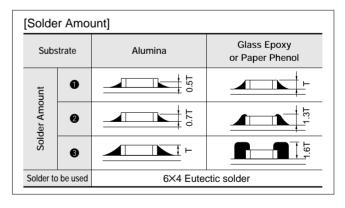
3. Temperature Cycling for Solder Fillet Height

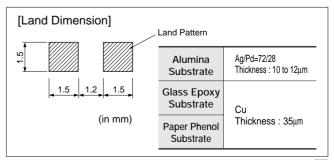
(1) Test Method

Solder the chips to the substrate various test fixtures using sufficient amounts of solder to achieve the required fillet height. Then subject the fixtures to the cycle illustrated below 200 times.

(1) Solder Amount


Alumina substrates are typically designed for reflow soldering.


Glass epoxy or paper phenol substrates are typically used for flow soldering.

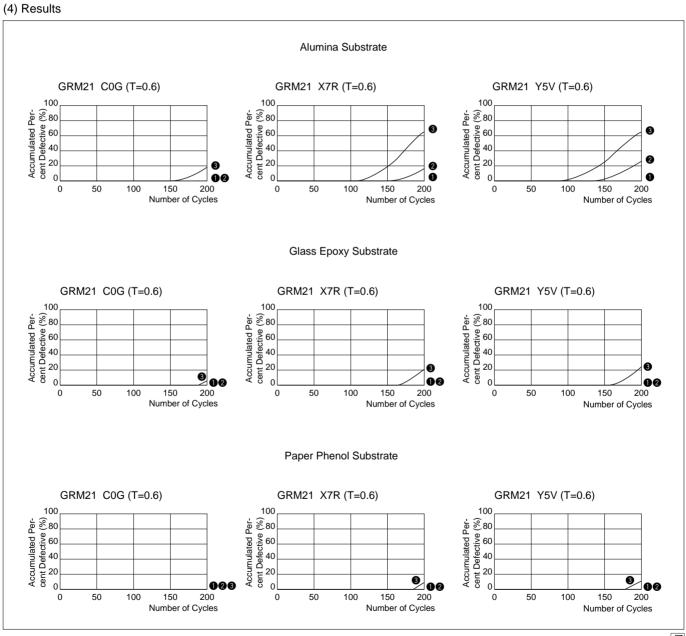

2 Material

Alumina (Thickness: 0.64mm) Glass epoxy (Thickness: 1.6 mm) (Thickness: 1.6 mm) Paper phenol

(3) Land Dimension

Continued from the preceding page.

(2) Test Samples

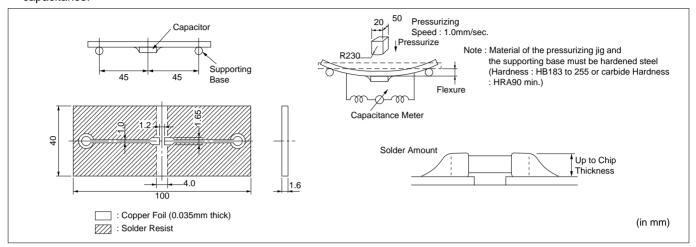

GRM40 C0G/X7R/Y5V Characteristics T=0.6mm

(3) Acceptance Criteria

Products shall be determined to be defective if the change in capacitance has exceeded the values specified in Table 3.

Table 3

Characteristics	Change in Capacitance		
COG	Within ±2.5% or ±0.25pF, whichever is greater		
X7R	Within ±7.5%		
Y5V	Within ±20%		



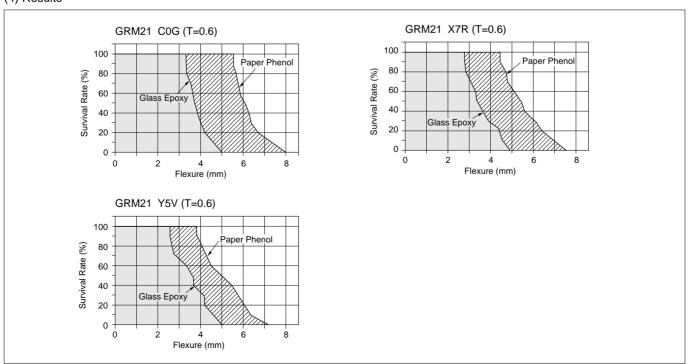
Continued from the preceding page.

4. Board Bending Strength for Board Material

(1) Test Method

Solder the chip to the test board. Then bend the board using the method illustrated below, as measure capacitance.

(2) Test Samples GRM21 C0G/X7R/Y5V Characteristics T=0.6mm typical


(3) Acceptance Criteria

Products shall be determined to be defective if the change in capacitance has exceeded the values specified in Table 4.

Table 4

Characteristics	Change in Capacitance
C0G	Within ±5% or ±0.5pF, whichever is greater
X7R	Within ±12.5%
Y5V	Within ±20%

(4) Results

Continued from the preceding page.

5. Break Strength

(1) Test Method

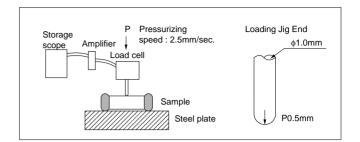
Place the chip on a steel plate as illustrated on the right. Increase load applied to a point near the center of the test sample.

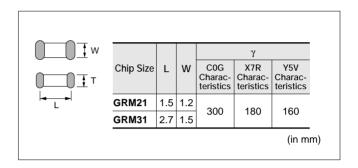
(2) Test Samples

GRM21 C0G/X7R/Y5V Characteristics GRM31 C0G/X7R/Y5V Characteristics

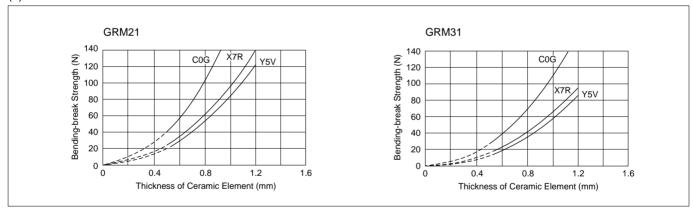
(3) Acceptance Criteria

Define the load that has caused the chip to break or crack, as the bending force.


(4) Explanation


Break strength, P, is proportionate to the square of the thickness of the ceramic element and is expressed as a curve of secondary degree.

The formula is:

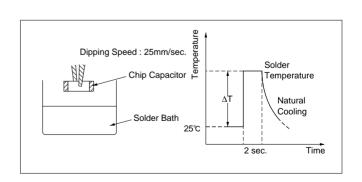

$$P = \frac{2\gamma W T^2}{3L} \quad (N)$$

W: Width of ceramic element (mm) T: Thickness of element (mm) L : Distance between fulcrums (mm) γ: Bending stress (N/mm²)

(5) Results

6. Thermal Shock

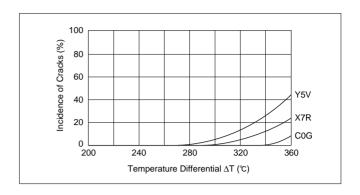
(1) Test method


After applying flux (an ethanol solution of 25% rosin), dip the chip in a solder bath (6X4 eutectic solder) in accordance with the following conditions:

(2) Test samples

GRM21 C0G/X7R/Y5V Characteristics T=0.6mm typical

(3) Acceptance criteria


Visually inspect the test sample with a 60-power optical microscope. Chips exhibiting breaks or cracks shall be determined to be defective.

Continued from the preceding page.

(4) Results

7. Solder Heat Resistance

(1) Test Method

1 Reflow soldering:

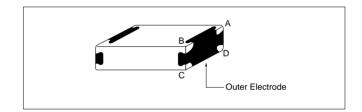
Apply about 300 μm of solder paste over the alumina substrate. After reflow soldering, remove the chip and check for leaching that may have occurred on the outer electrode.

2 Flow soldering:

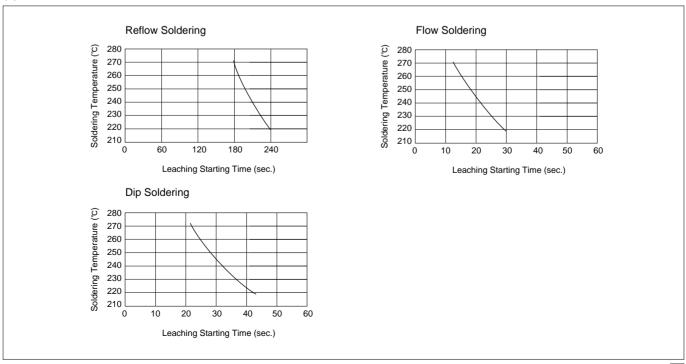
After dipping the test sample with a pair of tweezers in wave solder (eutectic solder), check for leaching that may have occurred on the outer electrode.

(2) Test samples

GRM21: For flow/reflow soldering T=0.6mm


(3) Acceptance criteria

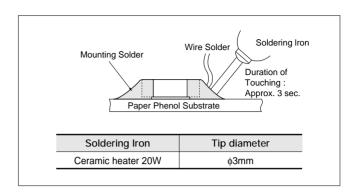
The starting time of leaching shall be defined as the time when the outer electrode has lost 25 % of the total edge length of A-B-C-D as illustrated :


3 Dip soldering:

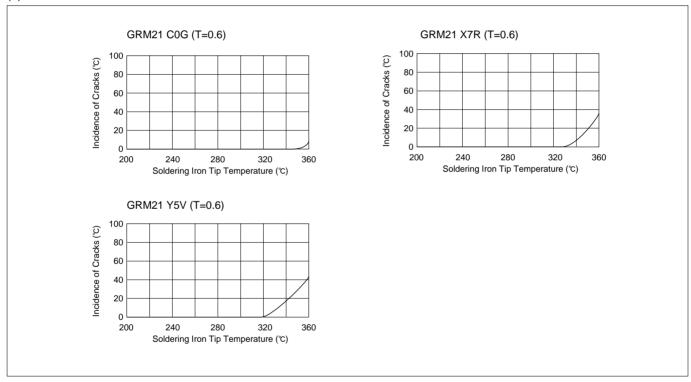
After dipping the test sample with a pair of tweezers in static solder (eutectic solder), check for leaching that may have occurred on the outer electrode.

4 Flux to be used: An ethanol solution of 25 % rosin.

(4) Results


Continued from the preceding page.

8. Thermal Shock when Making Corrections with a Soldering Iron

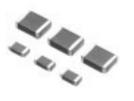

(1) Test Method

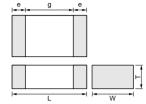
Apply a soldering iron meeting the conditions below to the soldered joint of a chip that has been soldered to a paper phenol board, while supplying wire solder. (Note: the soldering iron tip shall not directly touch the ceramic element of the chip.)

- (2) Test Samples
 GRM21 C0G/X7R/Y5V Characteristics T=0.6mm
- (3) Acceptance Criteria for Defects Observe the appearance of the test sample with a 60-power optical microscope. Those units displaying any breaks cracks shall be determined to be defective.

(4) Results

Chip Monolithic Ceramic Capacitors


Medium-voltage Low Dissipation Factor


■ Features

- 1. Murata's original internal electrode structure realizes high Flash-over Voltage.
- 2. A new monolithic structure for small, surfacemountable devices capable of operating at highvoltage levels.
- 3. Sn-plated external electrodes realize good solderability.
- 4. The GRM31 type for flow and reflow soldering, and other types for reflow soldering.
- 5. Low-loss and suitable for high-frequency circuits.
- 6. The temperature characteristics C0G and SL are temperature compensating type, and R is high dielectric constant type.

■ Applications

- Ideal use on high-frequency pulse circuit such as snubber circuit for switching power supply, DC-DC converter, ballast(inverter fluorescent lamp), and so on. (C0G and R Char.)
- Ideal for use as the ballast in liquid crystal back lighting inverters. (SL Char.)

Part Number	Dimensions (mm)						
Part Number	L	W	Т	e min.	g min.		
GRM31A	3.2 ±0.2	1.6 +0.2	1.0 +0		1.5*		
GRM31B	3.2 ±0.2	1.0 ±0.2	1.25 ⁺⁰ _{-0.3}		1.5		
GRM32Q	3.2 ±0.2	2.5 ±0.2	1.5 ⁺⁰ _{-0.3}	0.3	1.8		
GRM42D	4.5 ±0.3	2.0 ±0.2	2.0 ±0.3				
GRM43D	45.00	0.0.10.0	2.0 +0 -0.3		2.9		
GRM43E	4.5 ±0.3	3.2 ±0.3	2.5 ⁺⁰ _{-0.3}				

^{*} GRM31B1X3D : 1.8mm min.

GRM31A5C2J101JW01D	DC630			(mm)	(mm)	(mm)	(mm)	(mm)
•		C0G	100 +5,-5%	3.2	1.6	1.0	1.5 min.	0.3 min.
GRM31AR32J101KY01D	DC630	R	100 +10,-10%	3.2	1.6	1.0	1.5 min.	0.3 min.
GRM31A5C2J151JW01D	DC630	C0G	150 +5,-5%	3.2	1.6	1.0	1.5 min.	0.3 min.
GRM31AR32J151KY01D	DC630	R	150 +10,-10%	3.2	1.6	1.0	1.5 min.	0.3 min.
GRM31A5C2J221JW01D	DC630	C0G	220 +5,-5%	3.2	1.6	1.0	1.5 min.	0.3 min.
GRM31AR32J221KY01D	DC630	R	220 +10,-10%	3.2	1.6	1.0	1.5 min.	0.3 min.
GRM31A5C2J331JW01D	DC630	C0G	330 +5,-5%	3.2	1.6	1.0	1.5 min.	0.3 min.
GRM31AR32J331KY01D	DC630	R	330 +10,-10%	3.2	1.6	1.0	1.5 min.	0.3 min.
GRM31A5C2J471JW01D	DC630	C0G	470 +5,-5%	3.2	1.6	1.0	1.5 min.	0.3 min.
GRM31BR32J471KY01L	DC630	R	470 +10,-10%	3.2	1.6	1.25	1.5 min.	0.3 min.
GRM31BR32J681KY01L	DC630	R	680 +10,-10%	3.2	1.6	1.25	1.5 min.	0.3 min.
GRM31B5C2J102JW01L	DC630	C0G	1000 +5,-5%	3.2	1.6	1.25	1.5 min.	0.3 min.
GRM31BR32J102KY01L	DC630	R	1000 +10,-10%	3.2	1.6	1.25	1.5 min.	0.3 min.
GRM31AR33A470KY01D	DC1000	R	47 +10,-10%	3.2	1.6	1.0	1.5 min.	0.3 min.
GRM31AR33A680KY01D	DC1000	R	68 +10,-10%	3.2	1.6	1.0	1.5 min.	0.3 min.
GRM31AR33A101KY01D	DC1000	R	100 +10,-10%	3.2	1.6	1.0	1.5 min.	0.3 min.
GRM31AR33A151KY01D	DC1000	R	150 +10,-10%	3.2	1.6	1.0	1.5 min.	0.3 min.
GRM31AR33A221KY01D	DC1000	R	220 +10,-10%	3.2	1.6	1.0	1.5 min.	0.3 min.
GRM31AR33A331KY01D	DC1000	R	330 +10,-10%	3.2	1.6	1.0	1.5 min.	0.3 min.
GRM31BR33A471KY01L	DC1000	R	470 +10,-10%	3.2	1.6	1.25	1.5 min.	0.3 min.
GRM31B1X3D100JY01L	DC2000	SL	10 +5,-5%	3.2	1.6	1.25	1.8 min.	0.3 min.
GRM31B1X3D120JY01L	DC2000	SL	12 +5,-5%	3.2	1.6	1.25	1.8 min.	0.3 min.
GRM31B1X3D150JY01L	DC2000	SL	15 +5,-5%	3.2	1.6	1.25	1.8 min.	0.3 min.
GRM31B1X3D180JY01L	DC2000	SL	18 +5,-5%	3.2	1.6	1.25	1.8 min.	0.3 min.
GRM31B1X3D220JY01L	DC2000	SL	22 +5,-5%	3.2	1.6	1.25	1.8 min.	0.3 min.
GRM32Q1X3D270JY01L	DC2000	SL	27 +5,-5%	3.2	2.5	1.5	1.8 min.	0.3 min.
GRM32Q1X3D330JY01L	DC2000	SL	33 +5,-5%	3.2	2.5	1.5	1.8 min.	0.3 min.

 $\begin{tabular}{|c|c|c|c|}\hline \end{tabular}$ Continued from the preceding page.

Part Number	Rated Voltage (V)	TC Code	Capacitance (pF)	Length L (mm)	Width W (mm)	Thickness T (mm)	Electrode g (mm)	Electrode e (mm)
GRM32Q1X3D390JY01L	DC2000	SL	39 +5,-5%	3.2	2.5	1.5	1.8 min.	0.3 min.
GRM32Q1X3D470JY01L	DC2000	SL	47 +5,-5%	3.2	2.5	1.5	1.8 min.	0.3 min.
GRM32Q1X3D560JY01L	DC2000	SL	56 +5,-5%	3.2	2.5	1.5	1.8 min.	0.3 min.
GRM32Q1X3D680JY01L	DC2000	SL	68 +5,-5%	3.2	2.5	1.5	1.8 min.	0.3 min.
GRM32Q1X3D820JY01L	DC2000	SL	82 +5,-5%	3.2	2.5	1.5	1.8 min.	0.3 min.
GRM43D1X3D121JY01L	DC2000	SL	120 +5,-5%	4.5	3.2	2.0	2.9 min.	0.3 min.
GRM43D1X3D151JY01L	DC2000	SL	150 +5,-5%	4.5	3.2	2.0	2.9 min.	0.3 min.
GRM43D1X3D181JY01L	DC2000	SL	180 +5,-5%	4.5	3.2	2.0	2.9 min.	0.3 min.
GRM43D1X3D221JY01L	DC2000	SL	220 +5,-5%	4.5	3.2	2.0	2.9 min.	0.3 min.
GRM42D1X3F100JY02L	DC3150	SL	10 +5,-5%	4.5	2.0	2.0	2.9 min.	0.3 min.
GRM42D1X3F120JY02L	DC3150	SL	12 +5,-5%	4.5	2.0	2.0	2.9 min.	0.3 min.
GRM42D1X3F150JY02L	DC3150	SL	15 +5,-5%	4.5	2.0	2.0	2.9 min.	0.3 min.
GRM42D1X3F180JY02L	DC3150	SL	18 +5,-5%	4.5	2.0	2.0	2.9 min.	0.3 min.
GRM42D1X3F220JY02L	DC3150	SL	22 +5,-5%	4.5	2.0	2.0	2.9 min.	0.3 min.
GRM42D1X3F270JY02L	DC3150	SL	27 +5,-5%	4.5	2.0	2.0	2.9 min.	0.3 min.
GRM42D1X3F330JY02L	DC3150	SL	33 +5,-5%	4.5	2.0	2.0	2.9 min.	0.3 min.
GRM42D1X3F390JY02L	DC3150	SL	39 +5,-5%	4.5	2.0	2.0	2.9 min.	0.3 min.
GRM42D1X3F470JY02L	DC3150	SL	47 +5,-5%	4.5	2.0	2.0	2.9 min.	0.3 min.
GRM42D1X3F560JY02L	DC3150	SL	56 +5,-5%	4.5	2.0	2.0	2.9 min.	0.3 min.
GRM42D1X3F680JY02L	DC3150	SL	68 +5,-5%	4.5	2.0	2.0	2.9 min.	0.3 min.
GRM42D1X3F820JY02L	DC3150	SL	82 +5,-5%	4.5	2.0	2.0	2.9 min.	0.3 min.
GRM43E1X3F101JY01L	DC3150	SL	100 +5,-5%	4.5	3.2	2.5	2.9 min.	0.3 min.

		Specif	ication			
No.	Item	Temperature Compensating Type (C0G, SL Char.)	High Dielectric Constant Type (R Char.)	_	Test Method	
1	Operating Temperature Range	-55 to +125℃				
2	Appearance	No defects or abnormalities.		Visual inspection.		
3	Dimensions	Within the specified dimension.		Using calipers.		
4	Dielectric Strength	No defects or abnormalities.			Test voltage kV 120% of the rated voltage	
5	Insulation Resistance (I.R.)	More than 10,000M Ω		The insulation resist within 60±5 s of cha	ance shall be measured with 500±50V and urging.	
6	Capacitance	Within the specified tolerance.			D.F. shall be measured at 20°C at the	
7	Q/ Dissipation Factor (D.F.)	C≥30pF : Q≥1,000 C<30pF : Q≥400+20C C : Nominal Capacitance (pF)	D.F.≦0.01	frequency and voltage shown as follows. (1) Temperature Compensating Type Frequency: 1±0.2MHz Voltage: 0.5 to 5V (r.m.s.) (2) High Dielectric Constant Type Frequency: 1±0.2kHz Voltage: 1±0.2V (r.m.s.) • Pretreatment Perform a heat treatment at 150 ±♀₀ ℃ for 60±5 min an then let sit for 24±2 h at room condition.		
8	Capacitance Temperature Characteristics	Temp. Coefficient COG char.: 0±30ppm/°C (Temp. Range: -55 to +125°C) SL char.: +350 to -1,000 ppm/°C (Temp. Range: +20 to +85°C)		capacitance mea When cycling the through 5 (SL: + the specified tole Step 1 2 3 4 5 (2) High Dielectric C The range of cap within -55 to +1: • Pretreatment Perform a heat tr	coefficient is determined using the sured in step 3 as a reference. e temperature sequentially from step 1 20 to +85 °C) the capacitance shall be within rance for the temperature coefficient. Temperature(°C) 20±2 (25±2 for COG char.) Min. Operating Temp.±3 20±2 (25±2 for COG char.) Max. Operating Temp.±2 20±2 (25±2 for COG char.)	
9	Adhesive Strength of Termination	No removal of the terminations	or other defect shall occur.	in Fig.1 using a eute Then apply 10N forc The soldering shall be method and shall be	to the testing jig (glass epoxy board) shown ectic solder. see in the direction of the arrow. see done either with an iron or using the reflow econducted with care so that the soldering is defects such as heat shock. 10N, 10±1s Speed: 1.0mm/s Glass Epoxy Board Fig.1	

"Room condition" Temperature : 15 to 35°C, Relative humidity : 45 to 75%, Atmosphere pressure : 86 to 106kPa

Continued from the preceding page

7	Continued from the preceding page.									
			Specif	ication						
No.	Ite	em	Temperature Compensating Type (C0G, SL Char.)	High Dielectric Constant Type (R Char.)	Test Method					
		Appearance	No defects or abnormalities.		Solder the capacitor to the test jig (glass epoxy board).					
10	Vibration Resistance	Q/D.F.	Within the specified tolerance. C≥30pF : Q≥1,000 C<30pF : Q≥400+20C C : Nominal Capacitance (pF) D.F.≤0.01		The capacitor shall be subjected to a simple harmonic motion having a total amplitude of 1.5mm, the frequency being varied uniformly between the approximate limits of 10 and 55Hz. The frequency range, from 10 to 55Hz and return to 10Hz, shall be traversed in approximately 1 min. This motion shall be applied for a period of 2 h in each 3 mutually perpendicular directions (total of 6 h). Solder resist Glass Epoxy Board					
			No cracking or marking defects	shall occur.	Solder the capacitor to the testing jig (glass epoxy board) shown					
11	Deflection	n	(mm) a 3.2×1.6 2.2 3 3.2×2.5 2.2	t: 1.6 imension (mm) b	in Fig.2 using a eutectic solder. Then apply a force in the direction shown in Fig.3. The soldering shall be done either with an iron or using the reflow method and shall be conducted with care so that the soldering is uniform and free of defects such as heat shock. 20 50 Pressurizing speed: 1.0mm/s Pressurize Pressurize Capacitance meter (in mm)					
				7.0 3.7	Fig 3					
			Fi	g.2	Fig.3					
12	Solderab Terminati	•	75% of the terminations are to be soldered evenly and continuously.		Immerse the capacitor in a solution of ethanol (JIS-K-8101) and rosin (JIS-K-5902) (25% rosin in weight proportion). Immerse in eutectic solder solution for 2±0.5 s at 235±5°C. Immersing speed: 25±2.5mm/s					
		Appearance	No marking defects.		Preheat the capacitor at 120 to 150℃* for 1 min.					
		Capacitance Change	Within ±2.5% or ±0.25pF (Whichever is larger) C≥30pF: Q≥1,000	Within ±10%	Immerse the capacitor in eutectic solder solution at 260±5°C for 10±1 s. Let sit at room condition for 24±2 h, then measure. •Immersing speed: 25±2.5mm/s •Pretreatment for high dielectric constant type					
13	Resistance to Soldering Heat	Q/D.F.	C<30pF : Q≥400+20C C : Nominal Capacitance (pF)	D.F.≦0.01	Perform a heat treatment at 150 ^{±0} ₁₀ °C for 60±5 min and then let sit for 24±2 h at room condition.					
		I.R.	More than 10,000MΩ		*Preheating for more than 3.2×2.5mm					
		Dielectric	Daniella it. N. A.		Step Temperature Time					
		Strength	Pass the item No.4.		1 100°C to 120°C 1 min. 2 170°C to 200°C 1 min.					
		Appearance	No marking defects.		Fix the capacitor to the supporting jig (glass epoxy board) shown					
		Capacitance Change	Within ±2.5% or ±0.25pF (Whichever is larger)	Within ±10%	in Fig.4 using a eutectic solder. Perform the five cycles according to the four heat treatments listed in the following table.					
		Q/D.F.	C≧30pF : Q≧1,000 C<30pF : Q≧400+20C C : Nominal Capacitance (pF)	D.F.≦0.01	Let sit for 24±2 h at room condition, then measure. Step Temperature (°c) Time (min) 1 Min. Operating Temp.±3 30±3					
		I.R.	More than 10,000MΩ		2 Room Temp. 2 to 3					
					3 Max. Operating Temp.±2 30±3 4 Room Temp. 2 to 3					
14	Temperature Cycle	Dielectric Strength	Pass the item No.4.		•Pretreatment for high dielectric constant type Perform a heat treatment at 150 ± ?₀ °C for 60±5 min and then let sit for 24±2 h at room condition. Solder resist Glass Epoxy Board					
				dity: 45 to 75% Atmosphere pr	Fig.4					

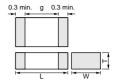
Continued from the preceding page.

			Specif	fication			
No.	. Item		Temperature Compensating High Dielectric Type (COG, SL Char.) Constant Type (R Char.)		Test Method		
		Appearance	No marking defects.				
		Capacitance Change	Within ±5.0% or ±0.5pF (Whichever is larger)	Within ±10%	-	and relative humidity 90 to 95% for	
15	Humidity (Steady State)	Q/D.F.	C≥30pF : Q≥350 C<30pF : Q≥275+ ½ C C : Nominal Capacitance (pF)	D.F.≦0.01	500 ±26 h. Remove and let sit for 24±2 h at room condition, then measu • Pretreatment for high dielectric constant type Perform a heat treatment at 150 ± 18 °C for 60±5 min and th		
		I.R.	More than 1,000M Ω		let sit for 24±2 h at room condition.		
		Dielectric Strength	Pass the item No.4.				
		Appearance	No marking defects.		Apply the voltage in following table for 1,000 ⁺⁴⁸ at maximum		
		Capacitance Change	Within ±3.0% or ±0.3pF (Whichever is larger)	Within ±10%	operating temperature±3°C Remove and let sit for 24±2 The charge/discharge curre	2 h at room condition, then measure.	
16	Life	Q/D.F.	C \geq 30pF : Q \geq 350 C $<$ 30pF : Q \geq 275+ $\frac{5}{2}$ C C : Nominal Capacitance (pF)	D.F.≦0.02	Pretreatment for high dielectric constant type Apply test voltage for 60±5 min at test temperature. Remove and let sit for 24±2 h at room condition.		
		I.R.	More than 1,000MΩ		Rated voltage	Test voltage	
		Dielectric Strength	Pass the item No.4.		More than DC 1kV Less than DC 1kV	Rated voltage 120% of the rated voltage	

[&]quot;Room condition" Temperature : 15 to 35°C, Relative humidity : 45 to 75%, Atmosphere pressure : 86 to 106kPa

Chip Monolithic Ceramic Capacitors

Medium-voltage High-Capacitance for General-Use


■ Features

- A new monolithic structure for small, highcapacitance capable of operating at high-voltage levels
- 2. Sn-plated external electrodes realize good solderability.
- 3. The GRM21/31 type for flow and reflow soldering, and other types for reflow soldering.

■ Applications

- Ideal use as hot-cold coupling for DC-DC converter.
- Ideal use on line filter and ringer detector for telephone, facsimile and modem.
- Ideal use on diode-snubber circuit for switching power supply.

Part Number	Dimensions (mm)						
Part Number	L W		T	g min.			
GRM21A	2.0 ±0.2	1.25 ±0.2	1.0 +0,-0.3	0.7			
GRM21B	2.0 ±0.2	1.23 ±0.2	1.25 ±0.2	0.7			
GRM31B	3.2 ±0.2	1.6 ±0.2	1.25 +0,-0.3				
GRM31C	3.2 ±0.2	1.0 ±0.2	1.6 ±0.2	1.2			
GRM32Q	3.2 ±0.3	2.5 ±0.2	1.5 +0,-0.3	1.2			
GRM32D	3.2 ±0.3	2.5 ±0.2	2.0 +0,-0.3				
GRM43Q	4.5 ±0.4	3.2 ±0.3	1.5 +0,-0.3	2.2			
GRM43D	4.5 ±0.4	3.2 ±0.3	2.0 +0,-0.3	2.2			
GRM55D	5.7 ±0.4	F 0 + 0 4	2.0 +0,-0.3	3.2			
GRM55X	5.7 ±0.4	5.0 ±0.4	2.7 +0,-0.3	3.2			

Part Number	Rated Voltage (V)	TC Code	Capacitance	Length L (mm)	Width W (mm)	Thickness T (mm)	Electrode g (mm)	Electrode e (mm)
GRM21AR72E102KW01D	DC250	X7R	1000pF +10,-10%	2.0	1.25	1.0	0.7 min.	0.3 min.
GRM21AR72E152KW01D	DC250	X7R	1500pF +10,-10%	2.0	1.25	1.0	0.7 min.	0.3 min.
GRM21AR72E222KW01D	DC250	X7R	2200pF +10,-10%	2.0	1.25	1.0	0.7 min.	0.3 min.
GRM21AR72E332KW01D	DC250	X7R	3300pF +10,-10%	2.0	1.25	1.0	0.7 min.	0.3 min.
GRM21AR72E472KW01D	DC250	X7R	4700pF +10,-10%	2.0	1.25	1.0	0.7 min.	0.3 min.
GRM21AR72E682KW01D	DC250	X7R	6800pF +10,-10%	2.0	1.25	1.0	0.7 min.	0.3 min.
GRM21BR72E103KW03L	DC250	X7R	10000pF +10,-10%	2.0	1.25	1.25	0.7 min.	0.3 min.
GRM31BR72E153KW01L	DC250	X7R	15000pF +10,-10%	3.2	1.6	1.25	1.2 min.	0.3 min.
GRM31BR72E223KW01L	DC250	X7R	22000pF +10,-10%	3.2	1.6	1.25	1.2 min.	0.3 min.
GRM31CR72E333KW03L	DC250	X7R	33000pF +10,-10%	3.2	1.6	1.6	1.2 min.	0.3 min.
GRM31CR72E473KW03L	DC250	X7R	47000pF +10,-10%	3.2	1.6	1.6	1.2 min.	0.3 min.
GRM32QR72E683KW01L	DC250	X7R	68000pF +10,-10%	3.2	2.5	1.5	1.2 min.	0.3 min.
GRM32DR72E104KW01L	DC250	X7R	0.1μF +10,-10%	3.2	2.5	2.0	1.2 min.	0.3 min.
GRM43QR72E154KW01L	DC250	X7R	0.15μF +10,-10%	4.5	3.2	1.5	2.2 min.	0.3 min.
GRM43DR72E224KW01L	DC250	X7R	0.22μF +10,-10%	4.5	3.2	2.0	2.2 min.	0.3 min.
GRM55DR72E334KW01L	DC250	X7R	0.33μF +10,-10%	5.7	5.0	2.0	3.2 min.	0.3 min.
GRM55DR72E474KW01L	DC250	X7R	0.47μF +10,-10%	5.7	5.0	2.0	3.2 min.	0.3 min.
GRM31BR72J102KW01L	DC630	X7R	1000pF +10,-10%	3.2	1.6	1.25	1.2 min.	0.3 min.
GRM31BR72J152KW01L	DC630	X7R	1500pF +10,-10%	3.2	1.6	1.25	1.2 min.	0.3 min.
GRM31BR72J222KW01L	DC630	X7R	2200pF +10,-10%	3.2	1.6	1.25	1.2 min.	0.3 min.
GRM31BR72J332KW01L	DC630	X7R	3300pF +10,-10%	3.2	1.6	1.25	1.2 min.	0.3 min.
GRM31BR72J472KW01L	DC630	X7R	4700pF +10,-10%	3.2	1.6	1.25	1.2 min.	0.3 min.
GRM31BR72J682KW01L	DC630	X7R	6800pF +10,-10%	3.2	1.6	1.25	1.2 min.	0.3 min.
GRM31BR72J103KW01L	DC630	X7R	10000pF +10,-10%	3.2	1.6	1.25	1.2 min.	0.3 min.
GRM31CR72J153KW03L	DC630	X7R	15000pF +10,-10%	3.2	1.6	1.6	1.2 min.	0.3 min.
GRM32QR72J223KW01L	DC630	X7R	22000pF +10,-10%	3.2	2.5	1.5	1.2 min.	0.3 min.
GRM32DR72J333KW01L	DC630	X7R	33000pF +10,-10%	3.2	2.5	2.0	1.2 min.	0.3 min.
GRM32DR72J473KW01L	DC630	X7R	47000pF +10,-10%	3.2	2.5	2.0	1.2 min.	0.3 min.
GRM43QR72J683KW01L	DC630	X7R	68000pF +10,-10%	4.5	3.2	1.5	2.2 min.	0.3 min.
GRM43DR72J104KW01L	DC630	X7R	0.1μF +10,-10%	4.5	3.2	2.0	2.2 min.	0.3 min.
GRM55DR72J154KW01L	DC630	X7R	0.15μF +10,-10%	5.7	5.0	2.0	3.2 min.	0.3 min.
GRM55XB32J224KY05L	DC630	В	0.22μF +10,-10%	5.7	5.0	2.7	3.5 min.	0.3 min.

No.	Iter	m	Specification	Test Method	
1	Operating Temperatur	re Range	-55 to +125℃	_	
2	Appearance	ce	No defects or abnormalities.	Visual inspection.	
3	Dimension	าร	Within the specified dimensions.	Using calipers.	
4	Dielectric	Strength	No defects or abnormalities.	No failure shall be observed when 150% of the rated voltage (200% of the rated voltage in case of rated voltage: DC 250V) is applied between the terminations for 1 to 5 s, provided the charge/discharge current is less than 50mA.	
5	Insulation R (I.R.)	tesistance	C≥0.01μF : More than 100MΩ • μF C<0.01μF : More than 10,000MΩ	The insulation resistance shall be measured with 500±50V (250±50V in case of rated voltage: DC 250V) and within 60±5 s of charging.	
6	Capacitan	ice	Within the specified tolerance.	The capacitance/D.F. shall be measured at 20°C at a frequency of 1±0.2kHz and a voltage of 1±0.2V (r.m.s.) •Pretreatment	
7	Dissipation Factor (D.		0.025 max.	Perform a heat treatment at 150^{+0}_{-10} °C for 60 ± 5 min and then let sit for 24 ± 2 h at room condition.	
8	Capacitano Temperatu Characteri	ıre	Cap. Change Within ±10% (B) (Temp. Range: −25 to +85°C) Within ±15% (X7R) (Temp. Range: −55 to +125°C)	The range of capacitance change compared with the 20° (B), 25° (X7R) value within -25 to $+85^{\circ}$ shall be within the specified range. •Pretreatment Perform a heat treatment at 150^{+9}_{-90} for 60 ± 5 min and then let sit for 24 ± 2 h at room condition.	
9	Adhesive Strength of Termination		No removal of the terminations or other defect shall occur.	Solder the capacitor to the testing jig (glass epoxy board) shown in Fig.1 using a eutectic solder. Then apply 10N force in the direction of the arrow. The soldering shall be done either with an iron or using the reflormethod and shall be conducted with care so that the soldering is uniform and free of defects such as heat shock. ToN, 10±1s Speed: 1.0mm/s Glass Epoxy Board	
				Fig.1	
		Appearance	No defects or abnormalities.	Solder the capacitor to the test jig (glass epoxy board).	
10	Vibration Resistance	D.F.	Within the specified tolerance. 0.025 max.	The capacitor shall be subjected to a simple harmonic motion having a total amplitude of 1.5mm, the frequency being varied uniformly between the approximate limits of 10 and 55Hz. The frequency range, from 10 to 55Hz and return to 10Hz, shall be traversed in approximately 1 min. This motion shall be applied for a period of 2 h in each 3 mutually perpendicular directions (total of 6 h). Solder resist Glass Epoxy Board	
	11 Deflection		No cracking or marking defects shall occur.	Solder the capacitor to the testing jig (glass epoxy board) shown in Fig.2 using a eutectic solder.	
11			LXW Dimension (mm) (mm) a b c d 2.0X1.25 1.2 4.0 1.65 3.2X1.6 2.2 5.0 2.0 3.2X2.5 2.2 5.0 2.9 4.5X3.2 3.5 7.0 3.7 5.7X5.0 4.5 8.0 5.6 Fig.2	Then apply a force in the direction shown in Fig.3. The soldering shall be done either with an iron or using the reflow method and shall be conducted with care so that the soldering is uniform and free of defects such as heat shock. 20 50 Pressurizing speed: 1.0mm/s Pressurize R230 Fressurize Flexure=1 Capacitance meter 45 (in mm) Fig.3	

"Room condition" Temperature : 15 to 35°C, Relative humidity : 45 to 75%, Atmosphere pressure : 86 to 106kPa

Continued from the preceding page

<u> </u>	Continued fr	om the prec	eding page.					
No.	Ite	em	Specification		Test Method			
12	Solderab Terminati	-	75% of the terminations is to be soldered evenly and continuously.	rosin (JIS-K-5 Immerse in eu	capacitor in a solution of ethano 902) (25% rosin in weight proputectic solder solution for 2±0.5 eed: 25±2.5mm/s	ortion).		
		Appearance	No marking defects.	Preheat the capacitor at 120 to 150°C* for 1 min.				
		Capacitance Change	Within ±10%	10±1 s. Let s	capacitor in eutectic solder solu tit at room condition for 24±2 h peed : 25±2.5mm/s			
		D.F.	0.025 max.	•Pretreatmen	t			
13	Resistance to Soldering Heat	I.R.	C ≥0.01 μ F : More than 100M Ω • μ F C<0.01 μ F : More than 10,000M Ω		eat treatment at $150 \pm_{1} \%$ c for 6 $\pm_{2} \%$ h at room condition.	60±5 min and then		
				*Preheating for	or more than 3.2×2.5mm			
		Dielectric Strength	Pass the item No.4.	Step 1 2	Temperature 100℃ to 120℃ 170℃ to 200℃	Time 1 min. 1 min.		
		Appearance	No marking defects.	Fix the capaci	tor to the supporting jig (glass	epoxy board) shown		
		Capacitance Change	Within ±7.5%	in Fig.4 using	a eutectic solder. ve cycles according to the four			
		D.F.	0.025 max.		2 h at room condition, then me	asure.		
		I B	C≧0.01μF : More than 100MΩ • μF	Step	Temperature (℃)	Time (min)		
		I.R.	C<0.01μF : More than 10,000MΩ	1	Min. Operating Temp.±3	30±3		
					Room Temp. Max. Operating Temp.±2	2 to 3 30±3		
				4	Room Temp.	2 to 3		
	Cycle	Dielectric Strength	Pass the item No.4.		eat treatment at 150±18°C for 6:2 h at room condition. Solder Glass Epoxy Board Fig. 4			
		Appearance	No marking defects.		g			
		Capacitance Change	Within ±15%	Sit the capacit	tor at 40±2℃ and relative humi	dity 90 to 95% for		
1 5	Humidity	D.F.	0.05 max.	_	let sit for 24±2 h at room condi	tion, then measure.		
15	(Steady State)	I.R.	C≥0.01μF : More than $10M\Omega \bullet \mu F$ C<0.01μF : More than $1,000M\Omega$	•Pretreatment Perform a heat treatment at 150 ⁺ ₋₁ ° ℃ for 60±5 min and then let sit for 24±2 h at room condition.				
		Dielectric Strength	Pass the item No.4.	- 161 311 101 241	2 II at room condition.			
		Appearance	No marking defects.	A == b . 4000'	file and adverted with a file (4500)			
		Capacitance Change	Within ±15%	Apply 120% of the rated voltage (150% of the rated voltage in case of rated voltage: DC250V) for 1,000 ± 48 h at maximum operating temperature±3°C. Remove and let sit for 24 ±2 h at				
16	Life	D.F.	0.05 max.	room condition	n, then measure.			
.0	Liic	I.R.	C≥0.01μF : More than $10M\Omega$ • μF C<0.01μF : More than $1,000M\Omega$	 Pretreatmen 	scharge current is less than 50 t Itage for 60±5 min at test temp			
		Dielectric Strength	Pass the item No.4.	Remove and				
		Appearance	No marking defects.					
		Capacitance Change	Within ±15%	Apply the rate	d voltage at 40±2°C and relativ	e humidity 90 to		
17	Humidity	D.F.	0.05 max.		et sit for 24±2 h at room condi	tion, then measure.		
17	Loading	I.R.	C≥0.01μF : More than 10MΩ • μF C<0.01μF : More than 1,000MΩ	Pretreatmen Apply test vo		perature.		
		Dielectric Strength	Pass the item No.4.	- Itemove and	iot sit ioi 2412 II at Iooiii Cono	nuo(1.		
D :	1141				nol B-			

[&]quot;Room condition" Temperature : 15 to 35°C, Relative humidity : 45 to 75%, Atmosphere pressure : 86 to 106kPa

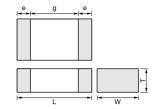
Chip Monolithic Ceramic Capacitors

AC250V Type (Which Meet Japanese Low)

■ Features

- 1. Chip monolitic ceramic capacitor for AC line.
- 2. A new monolithic structure for small, highcapacitance capable of operating at high-voltage
- 3. Sn-plated external electrodes realize good solderability.
- 4. Only for Reflow soldering.
- 5. Capacitance 0.01 to 0.1 uF for connecting lines and 470 to 4700 pF for connecting line to earth.

Noise suppression filters for switching power supplies, telephones, facsimiles, modems.


■ Refference srandard

JIS C 5102

JIS C 5150

The standards of the electrical appliance and material safety law of Japan, separated table 4.

Part Number		Dime	ensions (m	nm)		
Part Number	L	W	Т	e min.	g min.	
GA252D	5.7 ±0.4	2.8 ±0.3	2.0 ±0.3	0.3	3.5	
GA255D	3.7 ±0.4	5.0 ±0.4	2.0 ±0.3	0.3	3.5	

Part Number	Rated Voltage (V)	TC Code	Capacitance	Length L (mm)	Width W (mm)	Thickness T (mm)	Electrode g (mm)	Electrode e (mm)
GA252DB3E2471MY02L	AC250 (r.m.s.)	В	470pF +20,-20%	5.7	2.8	2.0	3.5 min.	0.3 min.
GA252DB3E2102MY02L	AC250 (r.m.s.)	В	1000pF +20,-20%	5.7	2.8	2.0	3.5 min.	0.3 min.
GA252DB3E2222MY02L	AC250 (r.m.s.)	В	2200pF +20,-20%	5.7	2.8	2.0	3.5 min.	0.3 min.
GA252DB3E2472MY02L	AC250 (r.m.s.)	В	4700pF +20,-20%	5.7	2.8	2.0	3.5 min.	0.3 min.
GA252DB3E2103MY02L	AC250 (r.m.s.)	В	10000pF +20,-20%	5.7	2.8	2.0	3.5 min.	0.3 min.
GA252DB3E2223MY02L	AC250 (r.m.s.)	В	22000pF +20,-20%	5.7	2.8	2.0	3.5 min.	0.3 min.
GA252DB3E2473MY02L	AC250 (r.m.s.)	В	47000pF +20,-20%	5.7	2.8	2.0	3.5 min.	0.3 min.
GA255DB3E2104MY02L	AC250 (r.m.s.)	В	0.1μF +20,-20%	5.7	5.0	2.0	3.5 min.	0.3 min.

108

No.	Ite	em	Specification	Test Me	ethod		
1	Operating Temperatu	ıre Range	−25 to +85°C	-			
2	Appearar	nce	No defects or abnormalities.	Visual inspection.			
3	Dimensio	ns	Within the specified dimensions.	Using calipers.			
4	4 Dielectric Strength		No defects or abnormalities.	between the terminations for 60±1	C≧10,000pF AC575V (r.m.s.)		
5	Insulation F	Resistance	More than $2,000M\Omega$	The insulation resistance shall be within 60±5 s of charging.	measured with 500±50V and		
6	Capacita	nce	Within the specified tolerance.	The capacitance/D.F. shall be mea	asured at 20°C at a frequency of		
7	Dissipation Factor (D		0.025 max.	The capacitance/D.F. shall be measured at 20°C at a frequenc 1±0.2kHz and a voltage of 1±0.2V (r.m.s.) •Pretreatment Perform a heat treatment at 150±18°C for 60±5 min and the let sit for 24±2 h at room condition.			
8	Capacitar Temperat Character	ure	Cap. Change Within ±10%	The range of capacitance change compared with the 20°C value within -25 to +85°C shall be within the specified range. •Pretreatment Perform a heat treatment at 150 + 18°C for 60±5 min and then let sit for 24±2 h at room condition.			
9	Discharge Test (Application: Nominal Capacitance C<10,000pF)	Appearance	No defects or abnormalities.	As in Fig., discharge is made 50 times at 5 s intervals fro the capacitor(Cd) charged at DC voltage of specified. R3 R1 T 10kV V Cd Cd Ct : Capacitor under test Cd: 0.001μF R1: 1,000Ω R2: 100ΜΩ R3: Surge resistan			
10	Adhesive of Termin	•	No removal of the terminations or other defects shall occur.	Solder the capacitor to the testing in Fig.1 using a eutectic solder. The direction of the arrow. The soldering iron or using the reflow method and so that the soldering is uniform an shock.	nen apply 10N force in the ng shall be done either with an id shall be conducted with care different of defects such as heat 10N, 10±1s Speed: 1.0mm/s Glass Epoxy Board		
		Appearance	No defects or abnormalities.	Solder the capacitor to the test jig	(glass epoxy board).		
		Capacitance	Within the specified tolerance.	The capacitor shall be subjected to	•		
11	Vibration Resistance	D.F.	0.025 max.	having a total amplitude of 1.5mm uniformly between the approximat frequency range, from 10 to 55Hz traversed in approximately 1 min. a period of 2 h in each 3 mutually of 6 h).	e limits of 10 and 55Hz. The and return to 10Hz, shall be This motion shall be applied for perpendicular directions (total		

"Room condition" Temperature : 15 to 35°C, Relative humidity : 45 to 75%, Atmosphere pressure : 86 to 106kPa

7	Continued fr	om the prec	eding page.			
No.	Ite	em	Specification		Test Method	
12	2 Deflection		No cracking or marking defects shall occur.	Solder the capacitor to the testing jig (glass epoxy board) shown in Fig.2 using a eutectic solder. Then apply a force in the direction shown in Fig. 3. The soldering shall be done either with an iron or using the reflow method and shall be conducted with care so that the soldering is uniform and free of defects such as heat shock. 20 50 Pressurizing speed: 1.0mm/s Pressurize Pressurize (in mm) Fig.3		
13	Solderab Terminati	•	75% of the terminations are to be soldered evenly and continuously.	Immerse the capacitor in a solution of ethanol (JIS-K-8101) and rosin (JIS-K-5902) (25% rosin in weight proportion)		
		Appearance	No marking defects.			
	Humidity	Capacitance Change	Within ±15%	The capacitor shall be subjected to 40±2℃, relative humidity of 90 to 98% for 8 h, and then removed in room condition for 16 h		
14	Insulation	D.F.	0.05 max.	until 5 cycles.	8 n, and then removed in roor	n condition for 16 n
		I.R. Dielectric Strength	More than $1,000M\Omega$ Pass the item No.4.	_		
		Appearance	No marking defects.	Preheat the ca	apacitor as table.	
		Capacitance Change	Within ±10%	10±1 s. Let si	apacitor in eutectic solder solution it at room condition for 24±2 hoeed: 25±2.5mm/s	
	D. data.	D.F.	0.025 max.	Pretreatment	t	
15	Resistance to Soldering	I.R.	More than $2,000M\Omega$		at treatment at 150±₁8°C for 2 h at room condition.	60±5 min and then
	Heat	Dielectric Strength	Pass the item No.4.	*Preheating Step 1 2	Temperature 100°C to 120°C 170°C to 200°C	Time 1 min 1 min
		A	No acception defeate			
		Appearance Capacitance Change	No marking defects. Within ±7.5%	in Fig.4 using	tor to the supporting jig (glass a eutectic solder. re cycles according to the four llowing table.	
		D.F.	0.025 max.	Let sit for 24±	2 h at room condition, then me	easure.
		I.R.	More than 2,000MΩ	Step	Temperature (°C)	Time (min)
				1	Min. Operating Temp.±3 Room Temp.	30±3 2 to 3
				3	Max. Operating Temp.±2	30±3
14	Temperature			4	Room Temp.	2 to 3
16	Cycle	Dielectric Strength	Pass the item No.4.		at treatment at 150 ± 10° °C for 2 h at room condition.	
					Fig.4	

"Room condition" Temperature : 15 to 35°C, Relative humidity : 45 to 75%, Atmosphere pressure : 86 to 106kPa

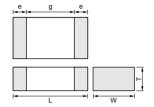
Continued from the preceding page.

No.	Ite	em	Specification	Test Method
		Appearance	No marking defects.	
	Humidity	Capacitance Change	Within ±15%	Sit the capacitor at 40±2°C and relative humidity 90 to 95% 500±26 h.
7	(Steady	D.F.	0.05 max.	Remove and let sit for 24±2 h at room condition, then measure Pretreatment
	State)	I.R.	More than 1,000M Ω	Perform a heat treatment at 150 ⁺ ₁₀ °C for 60±5 min and
		Dielectric Strength	Pass the item No.4.	let sit for 24±2 h at room condition.
		Appearance	No marking defects.	Apply voltage and time as Table at 85±2℃. Remove and le
		Capacitance Change	Within ±15%	for 24 \pm 2 h at room condition, then measure. The charge / discharge current is less than 50mA.
		D.F.	0.05 max.	Nominal Capacitance Test Time Test voltag C≥10,000pF 1,000 ^{±48} h AC300V (r.m.:
8	Life	I.R.	More than 1,000MΩ	C<10,000pF 1,500= 6 h AC500V (r.m.s
	Liic	Dielectric Strength	Pass the item No.4.	 * Except that once each hour the voltage is increased to AC1,000V (r.m.s.) for 0.1 s •Pretreatment Apply test voltage for 60±5 min at test temperature. Remove and let sit for 24±2 h at room condition.
		Appearance	No marking defects.	
		Capacitance Change	Within ±15%	Apply the rated voltage at 40±2°C and relative humidity 90 95% for 500±24 h.
9	Humidity Loading	D.F.	0.05 max.	Remove and let sit for 24±2 h at room condition, then measured. •Pretreatment
	Loading	I.R.	More than 1,000M Ω	Apply test voltage for 60±5 min at test temperature.
		Dielectric Strength	Pass the item No.4.	Remove and let sit for 24±2 h at room condition.

[&]quot;Room condition" Temperature : 15 to 35°C, Relative humidity : 45 to 75%, Atmosphere pressure : 86 to 106kPa

Chip Monolithic Ceramic Capacitors

Safety Standard Recognized Type GC (UL, IEC60384-14 Class X1/Y2)


■ Features

- 1. Chip monolitic ceramic capacitor (certified as conforming to safety standards) for AC line.
- 2. A new monolithic structure for small, highcapacitance capable of operating at high-voltage levels.
- 3. Compared to lead type capacitors, this new capacitor is greatly downsized and low-profiled to 1/10 or less in volume, and 1/4 or less in height.
- 4. The type GB can be used as an X2-class capacitor.
- 5. The type GC can be used as an X1-class and Y2-class capacitor.
- 6. +125 degree C guaranteed.
- 7. Only for reflow soldering.

■ Applications

- Ideal use as Y capacitor or X capacitor for various switching power supply.
- Ideal use as linefilter for MODEM.

Part Number		Dir	nensions (m	nm)	
Part Number	L	W	Т	e min.	g min.
GA355D	5.7 ±0.4	5.0 ±0.4	2.0 ±0.3		4.0
GA355X	3.7 ±0.4	5.0 ±0.4	2.7 ±0.3	0.3	4.0

■ Standard Recognition

	Standard No.	Status of R	Recognition	Rated Voltage	
	Standard No.	Type GB	Type GC		
UL	UL1414	_	©*		
BSI		_	0	AC250V (r.m.s.)	
VDE	EN132400	0	0		
SEV		0	0		
SEMKO		0	0		
EN132400 Class		X2	X1, Y2		

*: Line By Pass only

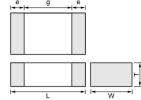
Part Number	Rated Voltage (V)	TC Code	Capacitance (pF)	Length L (mm)	Width W (mm)	Thickness T (mm)	Electrode g (mm)	Electrode e (mm)
GA355DR7GC101KY02L	AC250 (r.m.s.)	X7R	100 +10,-10%	5.7	5.0	2.0	4.0 min.	0.3 min.
GA355DR7GC151KY02L	AC250 (r.m.s.)	X7R	150 +10,-10%	5.7	5.0	2.0	4.0 min.	0.3 min.
GA355DR7GC221KY02L	AC250 (r.m.s.)	X7R	220 +10,-10%	5.7	5.0	2.0	4.0 min.	0.3 min.
GA355DR7GC331KY02L	AC250 (r.m.s.)	X7R	330 +10,-10%	5.7	5.0	2.0	4.0 min.	0.3 min.
GA355DR7GC471KY02L	AC250 (r.m.s.)	X7R	470 +10,-10%	5.7	5.0	2.0	4.0 min.	0.3 min.
GA355DR7GC681KY02L	AC250 (r.m.s.)	X7R	680 +10,-10%	5.7	5.0	2.0	4.0 min.	0.3 min.
GA355DR7GC102KY02L	AC250 (r.m.s.)	X7R	1000 +10,-10%	5.7	5.0	2.0	4.0 min.	0.3 min.
GA355DR7GC152KY02L	AC250 (r.m.s.)	X7R	1500 +10,-10%	5.7	5.0	2.0	4.0 min.	0.3 min.
GA355DR7GC222KY02L	AC250 (r.m.s.)	X7R	2200 +10,-10%	5.7	5.0	2.0	4.0 min.	0.3 min.
GA355DR7GC332KY02L	AC250 (r.m.s.)	X7R	3300 +10,-10%	5.7	5.0	2.0	4.0 min.	0.3 min.
GA355DR7GC472KY02L	AC250 (r.m.s.)	X7R	4700 +10,-10%	5.7	5.0	2.0	4.0 min.	0.3 min.

112

10

Chip Monolithic Ceramic Capacitors

Safety Standard Recognized Type GD (IEC60384-14 Class Y3)


■ Features

- A new monolithic structure for small, highcapacitance capable of operating at high-voltage levels
- 2. The type GD can be used as an Y3-class capacitor, and the type GF can be used as an Y2-class capacitor.
- 3. Available for the equipment based on IEC/EN60950 and UL1950.
- 4. +125 degree C guaranteed.
- 5. Only for reflow soldering.

■ Applications

- Ideal use on line filter and coupling for transformer-less DAA modem.
- Ideal use on line filter for information equipment.

Part Number		Dir	mensions (mm)	
Part Number	L	W	Т	e min.	g min.
GA342D	4.5 ±0.3	2.0 ±0.2	2.0 ±0.3		
GA343D	4.5 ±0.4	3.2 ±0.3	$2.0\pm^{0}_{0.3}$	0.3	Type GD : 2.5
GA352D	5.7 ±0.4	2.8 ±0.3	$2.0\pm^{0}_{0.3}$	0.3	Type GF: 3.5
GA355D	5.7 ±0.4	5.0 ±0.4	$2.0\pm^{0}_{0.3}$		

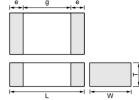
■ Standard Recognition

	Standard No.	Status of R	ecognition	Rated	
	Standard No.	Type GD	Type GF	Voltage	
SEMKO	EN132400	0	0	AC250V	
EN132400 Class		Y3	Y2	(r.m.s.)	

Part Number	Rated Voltage (V)	TC Code	Capacitance (pF)	Length L (mm)	Width W (mm)	Thickness T (mm)	Electrode g (mm)	Electrode e (mm)
GA342DR7GD101KW02L	AC250 (r.m.s.)	X7R	100 +10,-10%	4.5	2.0	2.0	2.5 min.	0.3 min.
GA342DR7GD151KW02L	AC250 (r.m.s.)	X7R	150 +10,-10%	4.5	2.0	2.0	2.5 min.	0.3 min.
GA342DR7GD221KW02L	AC250 (r.m.s.)	X7R	220 +10,-10%	4.5	2.0	2.0	2.5 min.	0.3 min.
GA342DR7GD471KW02L	AC250 (r.m.s.)	X7R	470 +10,-10%	4.5	2.0	2.0	2.5 min.	0.3 min.
GA342DR7GD102KW02L	AC250 (r.m.s.)	X7R	1000 +10,-10%	4.5	2.0	2.0	2.5 min.	0.3 min.
GA342DR7GD152KW02L	AC250 (r.m.s.)	X7R	1500 +10,-10%	4.5	2.0	2.0	2.5 min.	0.3 min.
GA343DR7GD182KW01L	AC250 (r.m.s.)	X7R	1800 +10,-10%	4.5	3.2	2.0	2.5 min.	0.3 min.
GA343DR7GD222KW01L	AC250 (r.m.s.)	X7R	2200 +10,-10%	4.5	3.2	2.0	2.5 min.	0.3 min.

Chip Monolithic Ceramic Capacitors

Safety Standard Recognized Type GF (IEC60384-14 Class Y2)


■ Features

- A new monolithic structure for small, highcapacitance capable of operating at high-voltage levels
- 2. The type GD can be used as an Y3-class capacitor, and the type GF can be used as an Y2-class capacitor.
- 3. Available for the equipment based on IEC/EN60950 and UL1950.
- 4. +125 degree C guaranteed.
- 5. Only for reflow soldering.

■ Applications

- Ideal use on line filter and coupling for transformer-less DAA modem.
- Ideal use on line filter for information equipment.

Part Number	Dimensions (mm)					
Part Number	L	W	Т	e min.	g min.	
GA342D	4.5 ±0.3	2.0 ±0.2	2.0 ±0.3			
GA343D	4.5 ±0.4	3.2 ±0.3	$2.0\pm^{0}_{0.3}$	0.3	Type GD : 2.5	
GA352D	5.7 ±0.4	2.8 ±0.3	$2.0\pm^{0}_{0.3}$	0.3	Type GF: 3.5	
GA355D	5.7 ±0.4	5.0 ±0.4	$2.0\pm^{0}_{0.3}$			

■ Standard Recognition

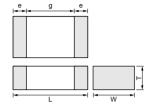
	Standard No.	Status of R	Rated	
	Standard No.	Type GD	Type GF	Voltage
SEMKO	EN132400	0	0	AC250V
EN132	400 Class	Y3	Y2	(r.m.s.)

Part Number	Rated Voltage (V)	TC Code	Capacitance (pF)	Length L (mm)	Width W (mm)	Thickness T (mm)	Electrode g (mm)	Electrode e (mm)
GA352DR7GF102KW01L	AC250 (r.m.s.)	X7R	1000 +10,-10%	5.7	2.8	2.0	3.5 min.	0.3 min.
GA355DR7GF222KW01L	AC250 (r.m.s.)	X7R	2200 +10,-10%	5.7	5.0	2.0	3.5 min.	0.3 min.

114

Chip Monolithic Ceramic Capacitors

Safety Standard Recognized Type GB (IEC60384-14 Class X2)


■ Features

- 1. Chip monolitic ceramic capacitor (certified as conforming to safety standards) for AC line.
- 2. A new monolithic structure for small, highcapacitance capable of operating at high-voltage levels.
- 3. Compared to lead type capacitors, this new capacitor is greatly downsized and low-profiled to 1/10 or less in volume, and 1/4 or less in height.
- 4. The type GB can be used as an X2-class capacitor.
- 5. The type GC can be used as an X1-class and Y2-class capacitor.
- 6. +125 degree C guaranteed.
- 7. Only for reflow soldering.

■ Applications

- Ideal use as Y capacitor or X capacitor for various switching power supply.
- Ideal use as linefilter for MODEM.

Part Number	Dimensions (mm)						
Part Number	L	W	T	e min.	g min.		
GA355D	5.7 ±0.4	5.0 ±0.4	2.0 ±0.3	0.3	4.0		
GA355X	3.7 ±0.4		2.7 ±0.3				

■ Standard Recognition

	Standard No.	Status of R	Rated	
	Standard No.	Type GB	Type GC	Voltage
UL	UL1414	_	©*	
BSI		_	0	
VDE	EN1400400	0	0	AC250V
SEV	EN132400	0	0	(r.m.s.)
SEMKO		0	0	
EN132400 Class		X2	X1, Y2	

*: Line By Pass only

Part Number	Rated Voltage (V)	TC Code	Capacitance (pF)	Length L (mm)	Width W (mm)	Thickness T (mm)	Electrode g (mm)	Electrode e (mm)
GA355DR7GB103KY02L	AC250 (r.m.s.)	X7R	10000 +10,-10%	5.7	5.0	2.0	4.0 min.	0.3 min.
GA355DR7GB153KY02L	AC250 (r.m.s.)	X7R	15000 +10,-10%	5.7	5.0	2.0	4.0 min.	0.3 min.
GA355DR7GB223KY02L	AC250 (r.m.s.)	X7R	22000 +10,-10%	5.7	5.0	2.0	4.0 min.	0.3 min.
GA355XR7GB333KY06L	AC250 (r.m.s.)	X7R	33000 +10,-10%	5.7	5.0	2.7	4.0 min.	0.3 min.

GA3 Series Specifications and Test Methods

lo. Item		Specification		Test Method			
Operating Temperatu	ıre Range	−55 to +125°C		-			
2 Appearance		No defects or abnormalities.	Visual inspection.				
Dimensio	ns	Within the specified dimensions.	Using calipers.				
4 Dielectric Strength		No defects or abnormalities.	No failure shall be observed when voltage as table is applied between the terminations for 60±1 s, provided the charge/discharge current is less than 50mA. Test voltage Type GB DC1075V Type GC/GD/GF AC1500V (r.m.s.)				
Insulation I	Resistance	More than 6,000MΩ	The insulation resistance within 60±5 s of charging.	shall be measured with 500±50V and			
Capacita	nce	Within the specified tolerance.	The capacitance/D.F. sha	Il be measured at 20°C at a frequency of			
		0.025 max.	1±0.2kHz and a voltage of Pretreatment Perform a heat treatment let sit for 24±2 h at room	t at 150 ±₁8 ℃ for 60±5 min and then			
Capacitance 8 Temperature Characteristics		Cap. Change Within ±15%	within −55 to +125°C shall •Pretreatment Perform a heat treatment	The range of capacitance change compared with the 25°C value within -55 to +125°C shall be within the specified range. •Pretreatment Perform a heat treatment at 150± 0°C for 60±5 min and then let sit for 24±2 h at room condition.			
	Appearance	No defects or abnormalities.	As in Fig., discharge is made 50 times at 5 s intervals from				
	I.R.	More than 1,000M Ω	the capacitor(Cd) charged	I at DC voltage of specified.			
Discharge Test (Application: Type GC)	Dielectric Strength	Pass the item No.4.		r under test $Cd: 0.001\mu F$ $100M\Omega$ R3: Surge resistance			
Adhesive Strength of Termination		No removal of the ferminations of other defect sha		No removal of the terminations or other defect shall occur.	Solder the capacitor to the testing jig (glass epoxy board) show in Fig.1 using a eutectic solder. Then apply 10N force in the direction of the arrow. The soldering shall be done either with a iron or using the reflow method and shall be conducted with car so that the soldering is uniform and free of defects such as hea shock. 10N, 10±1s Speed: 1.0mm/s Glass Epoxy Board Fig.1		
	Appearance	No defects or abnormalities.	Solder the capacitor to the	e test jig (glass epoxy board).			
	Capacitance	Within the specified tolerance.	1	pjected to a simple harmonic motion			
Vibration Resistance	D.F.	0.025 max.	uniformly between the app frequency range, from 10 traversed in approximately a period of 2 h in each 3 r of 6 h).	proximate limits of 10 and 55Hz. The to 55Hz and return to 10Hz, shall be y 1 min. This motion shall be applied for nutually perpendicular directions (total			
	Operating Temperature Appearar Dimension Dielectrical Insulation I	Operating Temperature Range Appearance Dimensions Dielectric Strength Insulation Resistance (I.R.) Capacitance Dissipation Factor (D.F.) Capacitance Temperature Characteristics Appearance I.R. Discharge Test (Application: Type GC) Type GC) Dielectric Strength Adhesive Strength of Termination Appearance Capacitance	Operating Temperature Range -55 to +125°C	Operating Temperature Range Appearance No defects or abnormalities. Visual inspection.			

"Room condition" Temperature : 15 to 35℃, Relative humidity : 45 to 75%, Atmosphere pressure : 86 to 106kPa

GA3 Series Specifications and Test Methods

Continued from the preceding page. Specification No Item Test Method Solder the capacitor to the testing jig (glass epoxy board) shown No cracking or marking defects shall occur. in Fig.2 using a eutectic solder. Then apply a force in the direction shown in Fig. 3. The soldering shall be done either with an iron or using the reflow method and shall be conducted with care so that the soldering is uniform and free of defects such as heat shock. 50 Pressurizing speed : 1.0mm/s t : 1.6 Deflection ☐ I Pressurize Dimension (mm) L×W (mm) d а C 4.5X2.0 3.5 7.0 2.4 Flexure=1 3.7 4.5X3.2 3.5 7.0 1.0 3.2 5.6 5.7×2.8 4.5 8.0 (in mm) 5.7×5.0 4.5 8.0 Fig.2 Fig.3 Immerse the capacitor in a solution of ethanol (JIS-K-8101) and Solderability of rosin (JIS-K-5902) (25% rosin in weight proportion). 75% of the terminations is to be soldered evenly and continuously. Termination Immerse in eutectic solder solution for 2±0.5 s at 235±5℃. Immersing speed: 25±2.5mm/s Preheat the capacitor as table. Immerse the capacitor in Appearance No marking defects. eutectic solder solution at 260±5°C for 10±1 s. Let sit at room Capacitance Within ±10% condition for 24±2 h, then measure. Change •Immersing speed: 25±2.5mm/s I.R. More than 1,000M Ω Pretreatment Resistance Perform a heat treatment at 150 ± 18 °C for 60±5 min and then to Soldering 14 let sit for 24±2 h at room condition. Heat Dielectric *Preheating Pass the item No.4. Strength Step Temperature Time 100℃ to 120℃ 1 min. 170℃ to 200℃ 1 min. Fix the capacitor to the supporting jig (glass epoxy board) shown Appearance No marking defects. in Fig.4 using a eutectic solder. Capacitance Within ±15%

> Let sit for 24±2 h at room condition, then measure. Time (min) Step Temperature (°C) More than $3.000M\Omega$ Min. Operating Temp.±3 30±3 2 Room Temp. 2 to 3 3 Max. Operating Temp.±2 30 ± 3 4 Room Temp. 2 to 3

Pretreatment

listed in the following table.

Perform a heat treatment at 150⁺₋₁₀ °C for 60±5 min and then let sit for 24±2 h at room condition.

Perform the five cycles according to the four heat treatments

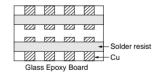


Fig.4

Capacitance Within ±15% Change Humidity Sit the capacitor at 40±2℃ and relative humidity 90 to 95% for (Steady D.F. 0.05 max. 500±12 h.

Remove and let sit for 24±2 h at room condition, then measure. State) I.R. More than 3 000MQ Dielectric Pass the item No.4.

"Room condition" Temperature: 15 to 35°C, Relative humidity: 45 to 75%, Atmosphere pressure: 86 to 106kPa

Change

D.F.

I.R.

Dielectric

Strength

Appearance

Strength

Temperature Cycle

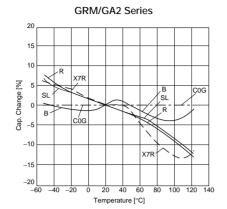
0.05 max.

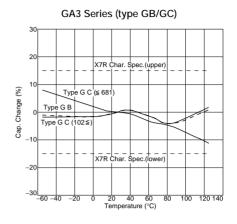
Pass the item No.4.

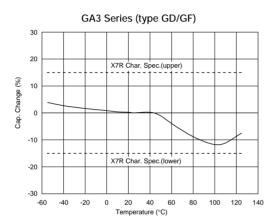
No marking defects.

GA3 Series Specifications and Test Methods

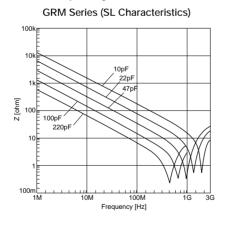
Continued from the preceding page.

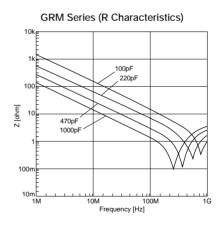

No.	Ite	em	Specification	Test Method
		Appearance Capacitance Change	No marking defects. Within ±20%	Impulse Voltage Each individual capacitor shall be subjected to a 2.5kV (Type GC/GF:5kV)Impulses (the voltage
		D.F.	0.05 max.	value means zero to peak) for three
		I.R.	More than $3,000 \text{M}\Omega$	times. Then the capacitors are applied to life test.
17	Life	Dielectric Strength	Pass the item No.4.	Apply voltage as Table for 1,000 h at 125 ± 6 °C, relative humidity 50% max. Type Applied voltage GB AC312.5V (r.m.s.), except that once each hour the voltage is increased to AC1,000V (r.m.s.) for 0.1s. GC GD AC425V (r.m.s.), except that once each hour the voltage is increased to AC1,000V (r.m.s.) for 0.1s.
		Appearance	No marking defects.	
		Capacitance Change	Within ±15%	Apply the rated voltage at 40±2°C and relative humidity 90 to
18	Humidity Loading	D.F.	0.05 max.	95% for 500 ⁺²⁴ h. Remove and let sit for 24±2 h at room
	Localing	I.R.	More than $3{,}000\text{M}\Omega$	condition, then measure.
		Dielectric Strength	Pass the item No.4.	


[&]quot;Room condition" Temperature : 15 to 35℃, Relative humidity : 45 to 75%, Atmosphere pressure : 86 to 106kPa

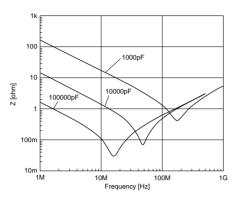


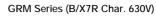
GRM/GA2/GA3 Series Data (Typical Example)

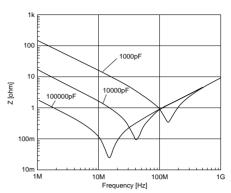

■ Capacitance-Temperature Characteristics

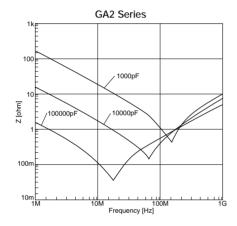


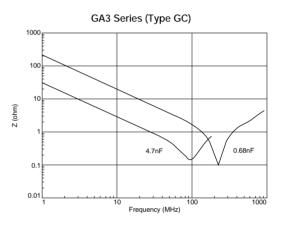
■ Impedance-Frequency Characteristics

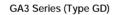


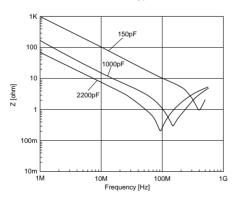

GRM/GA2/GA3 Series Data (Typical Example)

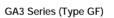

Continued from the preceding page.

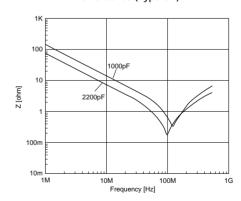

■ Impedance-Frequency Characteristics

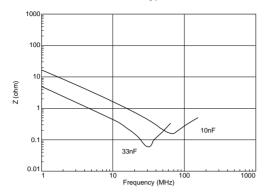

GRM Series (X7R Char. 250V)





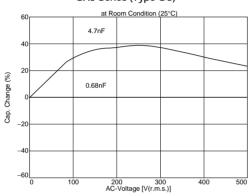




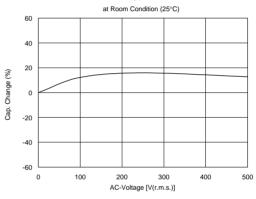


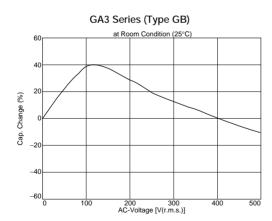
GRM/GA2/GA3 Series Data (Typical Example)

Continued from the preceding page.


■ Impedance-Frequency Characteristics

GA3 Series (Type GB)

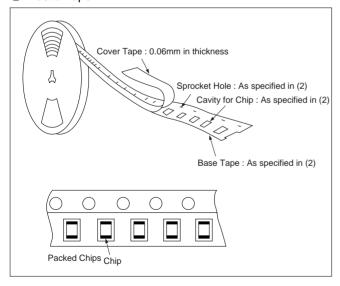



■ Capacitance-AC Voltage Characteristics

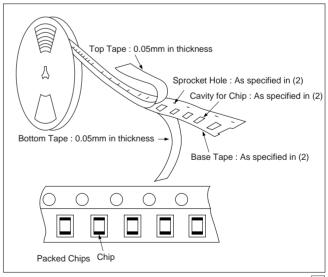
GA3 Series (Type GC)

GA3 Series (Type GD/GF)

Package


Taping is standard packaging method.

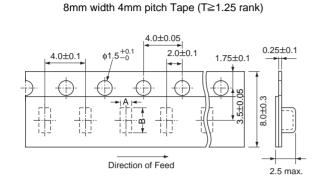
■ Minimum Quantity Guide


		D	imensions (m	m)		ty (pcs.)	
Part Nu	mber				∳180mm reel		
		L	W	Т	Paper Tape	Plastic Tape	
	GRM21	2.0	1.25	1.0	4,000	-	
	GRIVIZI	2.0	1.25	1.25	-	3,000	
				1.0	4,000	-	
	GRM31	3.2	1.6	1.25	-	3,000	
				1.6	-	2,000	
	GRM32	2.2	2.5	1.5	-	2,000	
NA - diama a - diama		3.2	2.5	2.0	-	1,000	
Medium-voltage	GRM42	4.5	2.0	2.0	-	2,000	
	GRM43	4.5	3.2	1.5	-	1,000	
				2.0	-	1,000	
				2.5	-	500	
		5.7		2.0	-	1,000	
	GRM55		5.0	2.7	-	500	
A C250V	GA252	5.7	2.8	2.0	-	1,000	
AC250V	GA255	5.7	5.0	2.0	-	1,000	
	GA342	4.5	2.0	2.0	-	2,000	
Cafata Chal	GA343	4.5	3.2	2.0	-	1,000	
Safety Std. Recognition	GA352	5.7	2.8	2.0	-	1,000	
	CASEE	F 7	F.0	2.0	-	1,000	
	GA355	5.7	5.0	2.7	-	500	

■ Tape Carrier Packaging

- (1) Appearance of Taping
- 1 Plastic Tape

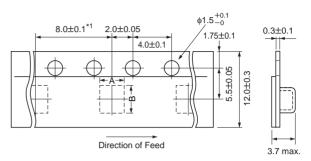
2 Paper Tape



Package

Continued from the preceding page.

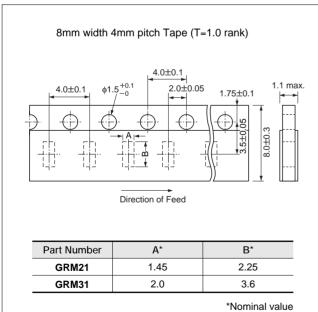
(2) Dimensions of Tape


1) Plastic Tape

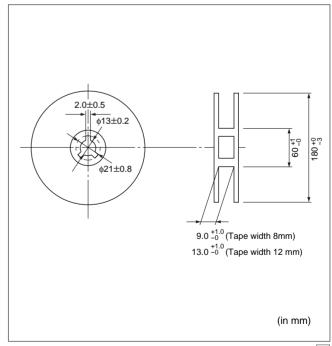
Part Number	A*	B*
GRM21	1.45	2.25
GRM31	2.0	3.6
GRM32	2.9	3.6

*Nominal Value

12mm width 8mm/4mm pitch Tape


Part Number	A*	B*
GRM42/GA342	2.5	5.1
GRM43/GA343	3.6	4.9
GA252/GA352	3.2	6.1
GRM55		
GA255	5.4	6.1
GA355		

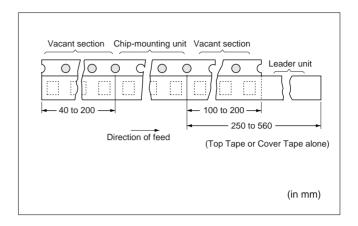
^{*1 4.0±0.1}mm in case of GRM42/GA342

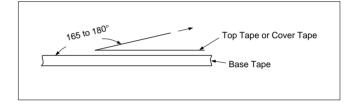

*Nominal Value

(in mm)

2 Paper Tape

(3) Dimensions of Reel


Continued on the following page.



(in mm)

- Continued from the preceding page.
- (4) Taping Method
 - ① Tapes for capacitors are wound clockwise. The sprocket holes are to the right as the tape is pulled toward the user.
 - ② Part of the leader and part of the empty tape shall be attached to the end of the tape as right figure.
 - ③ The top tape or cover tape and base tape are not attached at the end of the tape for a minimum of 5 pitches.
 - Missing capacitors number within 0.1% of the number per reel or 1 pc, whichever is greater, and are not continuous.
 - (5) The top tape or cover tape and bottom tape shall not protrude beyond the edges of the tape and shall not cover sprocket holes.
 - 6 Cumulative tolerance of sprocket holes, 10 pitches : ± 0.3 mm.
 - Peeling off force: 0.1 to 0.7N in the direction shown on the right.

⚠Caution

■ Storage and Operating Conditions

Operating and storage environment
Do not use or store capacitors in a corrosive
atmosphere, especially where chloride gas, sulfide
gas, acid, alkali, salt or the like are present and
avoid exposure to moisture. Before cleaning, bonding
or molding this product, verify that these processes
do not affect product quality by testing the
performance of a cleaned, bonded or molded product

in the intended equipment. Store the capacitors where the temperature and relative humidity do not exceed 5 to 40 degrees centigrade and 20 to 70%. Use capacitors within 6 months. Confirm the solderability in case of 6 months or more. "Failure to follow the above cautions may result, worst case, in a short circuit and cause fuming or partial dispersion when the product is used."

■ Handling

- Vibration and impact
 Do not expose a capacitor to excessive shock or vibration during use.
- Do not touch the chip capacitor especially ceramic body directly. The short error on the surface might be occurred by the ion ingredient brought from human finger or hand.
- "Failure to follow the above cautions may result, worst case, in a short circuit and cause fuming or partial dispersion when the product is used."

⚠Caution

Caution (Rating)

1. Operating Voltage

When DC-rated capacitors are to be used in AC or ripple current circuits, be sure to maintain the Vp-p value of the applied voltage or the Vo-p which contains DC bias within the rated voltage range.

When the voltage is started to apply to the circuit or it is stopped applying, the irregular voltage may be generated for a transit period because of resonance or switching. Be sure to use a capacitor within rated voltage containing these irregular voltage.

Voltage	DC Voltage	DC+AC Voltage	AC Voltage	Pulse Voltage (1)	Pulse Voltage (2)
Positional Measurement	Vo-p	Vo-p	Vp-p	Vp-p	Vp-p

2. Operating Temperature and Self-generated Heat

(1) In case of B/X7R char.

Keep the surface temperature of a capacitor below the upper limit of its rated operating temperature range. Be sure to take into account the heat produced by the capacitor itself. When a capacitor is used in a highfrequency current, pulse current or the like, it may produce heat due to dielectric loss. Keep such selfgenerated temperature below 20°C. When measuring, use a thermocouple of small thermal capacity-K of \$\phi 0.1\$ mm and be in the condition where capacitor is not affected by radiant heat of other components and wind of surroundings. Excessive heat may lead to deterioration of the capacitor's characteristics and reliability.

(2) In case of C0G/R char.

Keep the surface temperature of a capacitor below the upper limit of its rated operating temperature range. Be sure to take into account the heat produced by the capacitor itself. When a capacitor is used in a highfrequency current, pulse current or the like, it may produce heat due to dielectric loss. The allowable frequency should be in less than 500kHz in sine wave. The applied voltage should be limited maximum 60% of the rated voltage (400Vp-p): rated voltage: DC630V and maximum 70% of the rated voltage (700Vp-p): rated voltage DC1kV at 500kHz in more than 10kHz domain as right figure. While, in case of non-sine wave which include a harmonic frequency, please contact our sales representatives or product engineers. The excessive heat may occur a deterioration of the electric characteristic or the reliability on a capacitor.

△Caution

Continued from the preceding page

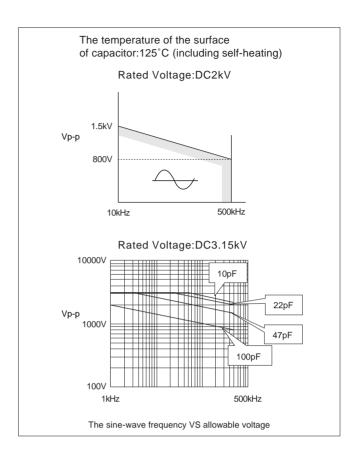
(3) In case of SL char.

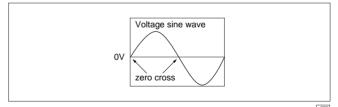
Keep the surface temperature of a capacitor below the upper limit of its rated operating temperature range. Be sure to take into account the heat produced by the capacitor itself. When a capacitor is used in a highfrequency current, pulse current or the like, it may produce heat due to dielectric loss. The allowable frequency should be in less than 500kHz in sine wave. The applied voltage should be less than the value as shown in right figure. While, in case of non-sine wave which include a harmonic frequency, please contact our sales representatives or product engineers. The excessive heat may occur a deterioration of the electric characteristic or the reliability on a capacitor.

3. Test condition for AC withstanding Voltage

(1) Test Equipment

Test equipment for AC withstanding voltage shall be used with the performance of the wave similar to 50/60 Hz sine


If the distorted sine wave or over load exceeding the specified voltage value is applied, the defective may be caused.

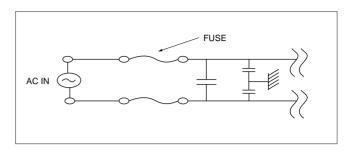

(2) Voltage applied method

When the withstanding voltage is applied, capacitor's lead or terminal shall be firmly connected to the out-put of the withstanding voltage test equipment, and then the voltage shall be raised from near zero to the test voltage. If the test voltage without the raise from near zero voltage would be applied directly to capacitor, test voltage should be applied with the *zero cross. At the end of the test time, the test voltage shall be reduced to near zero, and then capacitor's lead or terminal shall be taken off the out-put of the withstanding voltage test equipment. If the test voltage without the raise from near zero voltage would be applied directly to capacitor, the surge voltage may arise, and therefore, the defective may be caused.

*ZERO CROSS is the point where voltage sine wave pass 0V.

- See the right figure -

∴Caution


Ontinued from the preceding page.

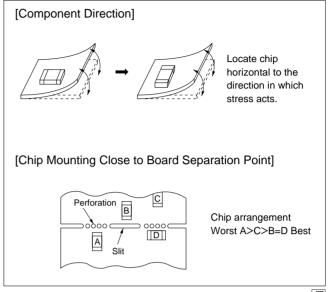
4. Fail-Safe

When capacitor would be broken, failure may result in a short circuit. Be sure to provide an appropriate fail-safe function like a fuse on your product if failure would follow an electric shock, fire or fume.

Please be considered to use fuses on each AC lines in case that capacitors are used between AC input line to earth (line by-pass capacitor) preparing for the worst (short-circuit).

Failure to follow the above cautions may result, worst case, in a short circuit and cause fuming or partial dispersion when the product is used.

∴ Caution


■ Caution (Soldering and Mounting)

Vibration and Impact
 Do not expose a capacitor to excessive shock or vibration during use.

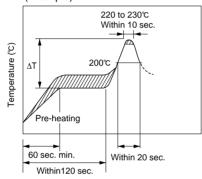
2. Circuit Board Material

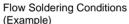
Please contact our sales representatives or engineers in case that GR/GA products (size 4.5×3.2mm and over) are to be mounted upon a metal-board or metal-frame. Soldering heat causes the expansion and shrinkage of a board or frame. which may result in chip-cracking.

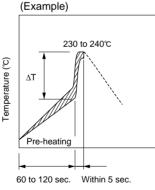
3. Land Layout for Cropping PC Board
Choose a mounting position that minimizes the stress
imposed on the chip during flexing or bending of the
board.

Continued from the preceding page.

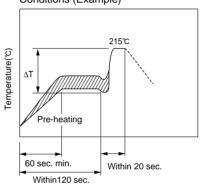
4. Soldering (Prevention of the thermal shock) If a chip component is heated or cooled abruptly during soldering, it may crack due to the thermal shock. To prevent this, adequate soldering condition should be taken following our recommendation below.

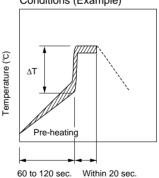

Carefully perform pre-heating so that temperature difference (ΔT) between the solder and component surface should be in the following range. When components are immersed in solvent after mounting, pay special attention to maintain the temperature difference within 100°C.


Chip Size Soldering Method	3.2×1.6mm and under	3.2×2.5mm and over
Reflow Method or Soldering Iron Method	ΔT≦190°C	ΔΤ≦130°C
Flow Method or Dip Soldering Method	ΔT≦150°C	


When soldering chips with a soldering iron, it should be performed in following conditions.

Item	Conditions	
Chip Size	≦2.0×1.25mm	3.2×1.6mm
Temperature of Iron-tip	300°C max.	270°C max.
Soldering Iron Wattage	20W max.	
Diameter of Iron-tip	φ 3.0mm max.	
Soldering Time	3 sec. max.	
Caution	Do not allow the iron-tip to directly touch the ceramic element.	


Infrared Reflow Soldering Conditions (Example)



Vapor Reflow Soldering (VPS) Conditions (Example)

Dip Soldering/Soldering Iron Conditions (Example)

5. Soldering Method

GR/GA products whose sizes are 3.2×1.6mm and under for flow and reflow soldering, and other sizes for reflow

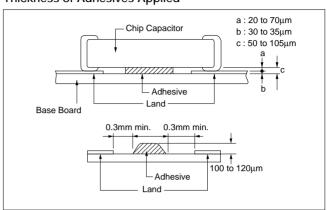
Be sure to contact our sales representatives or engineers in case that GR/GA products (size 3.2×2.5mm and over) are to be mounted with flow soldering. It may crack due to the thermal shock.

Failure to follow the above cautions may result, worst case, in a short circuit and fuming when the product is used.

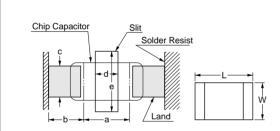
Notice

■ Notice (Soldering and Mounting)

- 1. Mounting of Chips
- Mechanical shock of the chip placer
 When the positioning claws and pick up nozzle are worn, the load is applied to the chip while positioning is concentrated to one position, thus causing cracks, breakage, faulty positioning accuracy, etc.


Careful checking and maintenance are necessary to prevent unexpected trouble.

An excessively low bottom dead point of the suction nozzle imposes great force on the chip during mounting, causing cracked chips. Please set the suction nozzle's bottom dead point on the upper surface of the board.


2. Construction of Board Pattern

After installing chips, if solder is excessively applied to the circuit board, mechanical stress will cause destruction resistance characteristics to lower. To pre-vent this, be extremely careful in determining shape and dimension before designing the circuit board diagram.

Termination Thickness of Chip Capacitor and Desirable Thickness of Adhesives Applied

Construction and Dimensions of Pattern (Example)

Preparing slit help flux cleaning and resin coating on the back of the capacitor.

Flow Soldering

L×W	а	b	С
2.0×1.25	1.0-1.2	0.9-1.0	0.8-1.1
3.2×1.6	2.2-2.6	1.0-1.1	1.0-1.4

Reflow Soldering

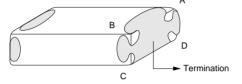
L×W	а	b	С	d	е
2.0×1.25	1.0-1.2	0.9-1.0	0.8-1.1	-	-
3.2×1.6	2.2-2.4	0.8-0.9	1.0-1.4	1.0-2.0	3.2-3.7
3.2×2.5	2.0-2.4	1.0-1.2	1.8-2.3	1.0-2.0	4.1-4.6
4.5×2.0	2.8-3.4	1.2-1.4	1.4-1.8	1.0-2.8	3.6-4.1
4.5×3.2	2.8-3.4	1.2-1.4	2.3-3.0	1.0-2.8	4.8-5.3
5.7×2.8	4.0-4.6	1.4-1.6	2.1-2.6	1.0-4.0	4.4-4.9
5.7×5.0	4.0-4.6	1.4-1.6	3.5-4.8	1.0-4.0	6.6-7.1

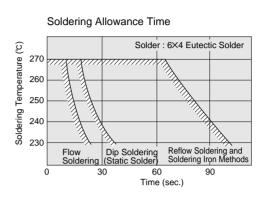
(in mm)

Land Layout to Prevent Excessive Solder

	Mounting Close to a Chassis	Mounting with Leaded Components	Mounting Leaded Components Later
Examples of Arrangements to be Avoided	Chassis Solder (Ground solder) Adhesive Base board Land Pattern in section	Lead Wire Connected to a Part Provided with Lead Wires.	Soldering Iron Lead Wire of Component to be Connected Later. in section
Examples of Improvements by the Land Division	d2 d1 <d2 resist<="" solder="" td=""><td>Solder Resist</td><td>Solder Resist</td></d2>	Solder Resist	Solder Resist
	in section	in section	in section

Notice


Continued from the preceding page.


3. Soldering

(Care for minimizing loss of the terminations.)
Limit of losing effective area of the terminations and conditions needed for soldering.

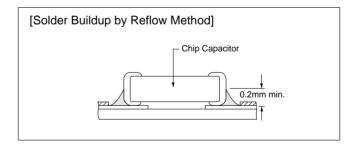
Depending on the conditions of the soldering temperature and/or immersion (melting time), effective areas may be lost in some part of the terminations.

To prevent this, be careful in soldering so that any possible loss of the effective area on the terminations will securely remain minimum 25% on all edge length A-B-C-D of part with A, B, C, D, shown in the Figure below.

In case of repeated soldering, the accumulated soldering time must be within the range shown above.

(2) Flux

 Use rosin-type flux and do not use a highly acidic flux (any containing a minimum of 0.2wt% chlorine).


(3) Solder Buildup

Flow soldering and iron soldering
 Use as little solder as possible, and confirm that the solder is securely placed.

[Solder Buildup by Flow Method and Soldering Iron Method] Max. Buildup Min. Buildup Excessive Solder Buildup

2 Reflow soldering

When soldering, confirm that the solder is placed over 0.2mm of the surface of the terminations.

4. Cleaning

To perform ultrasonic cleaning, observe the following conditions on the right.

5. Resin Coating

- When selecting resin materials, select those with low contraction and low moisture absorption coefficient (generally epoxy resin is used).
- Buffer coat can decrease the influence of the resin shrinking (generally silicone resin).

Rinse bath capacity: Output of 20 watts per liter or less. Rinsing time: 5 minutes maximum.

Notice

■ Rating

Capacitance change of capacitor

- Class 1 capacitors
 Capacitance might change a little depending on a surrounding temperature or an applied voltage.

 Please contact us if you use for the strict time constant circuit.
- 2. Class 2 and 3 capacitors Class 2 and 3 capacitors like temperature characteristic B, E and F have an aging

characteristic, whereby the capacitor continually decreases its capacitance slightly if the capacitor leaves for a long time. Moreover, capacitance might change greatly depending on a surrounding temperature or an applied voltage. So, it is not likely to be able to use for the time constant circuit. Please contact us if you need a detail information.

ISO 9000 Certifications

Plant	Certified Date	Organization	Registration No.
Fukui Murata Manufacturing Co., Ltd.	Apr. 2, '97	UL *1	A5287
Izumo Murata Manufacturing Co., Ltd.	Jul. 25, '97	ISO9001	A5587
Murata Electronics Singapore (Pte.) Ltd.	Nov. 3, '99	PSB *2 ISO9001	99-2-1085
Murata Manufacturing (UK) Ltd.	Jun. 24, '98	BSI *3 ISO9001	FM 22169
Murata Amazonia Industria Comercio Ltda.	Jul. 28, '98	FUNDACAO VANZOLINI ISO9002	SQ-480-675/98
Murata Electronics North America State College Plant	Mar. 7, '96	UL *1 ISO9001	A1734
Beijing Murata Electronics Co., Ltd.	Dec. 10, '98	UL *1 ISO9002	A7123

^{*1} UL : Underwriters Laboratories Inc.

^{*2} PSB : Singapore Productivity and Standards Board

^{*3} BSI : British Standards Institution

1. Export Control

(For customers outside Japan)

Murata products should not be used or sold for use in the development, production, stockpiling or utilization of any conventional weapons or mass-destructive weapons (nuclear weapons, chemical or biological weapons, or missiles), or any other weapons.

⟨For customers in Japan⟩

For products which are controlled items subject to the "Foreign Exchange and Foreign Trade Law" of Japan, the export license specified by the law is required for export.

- 2. Please contact our sales representatives or product engineers before using our products listed in this catalog for the applications listed below which require especially high reliability for the prevention of defects which might directly cause damage to the third party's life, body or property, or when intending to use one of our products for other applications than specified in this catalog.
 - 1 Aircraft equipment
- ② Aerospace equipment
- 3 Undersea equipment5 Medical equipment
- Power plant equipment
 Transportation equipment (vehicles, trains, ships, etc.)
- 7 Traffic signal equipment
- 8 Disaster prevention / crime prevention equipment
- 9 Data-processing equipment
- 10 Application of similar complexity and/or reliability requirements to the applications listed in the above
- 3. Product specifications in this catalog are as of January 2002. They are subject to change or our products in it may be discontinued without advance notice. Please check with our sales representatives or product engineers before ordering. If there are any questions, please contact our sales representatives or product engineers.
- 4. Please read rating and \triangle CAUTION (for storage and operating, rating, soldering and mounting, handling) in this catalog to prevent smoking and/or burning, etc.
- 5. This catalog has only typical specifications because there is no space for detailed specifications. Therefore, please approve our product specification or transact the approval sheet for product specification before ordering.
- 6. Please read CAUTION and Notice in this catalog for safety. This catalog has only typical specifications. Therefore you are requested to approve our product specification or to transact the approval sheet for product specification, before ordering.
- 7. Please note that unless otherwise specified, we shall assume no responsibility whatsoever for any conflict or dispute that may occur in connection with the effect of our and/or third party's intellectual property rights and other related rights in consideration of your using our products and/or information described or contained in our catalogs. In this connection, no representation shall be made to the effect that any third parties are authorized to use the rights mentioned above under licenses without our consent.
- 8. No ozone depleting substances (ODS) under the Montreal Protocol are used in our manufacturing process.

http://www.murata.com/